

Itpr1 Cas9-CKO Strategy

Designer:

Huan Wang

Reviewer:

Huan Fan

Design Date:

2020-1-4

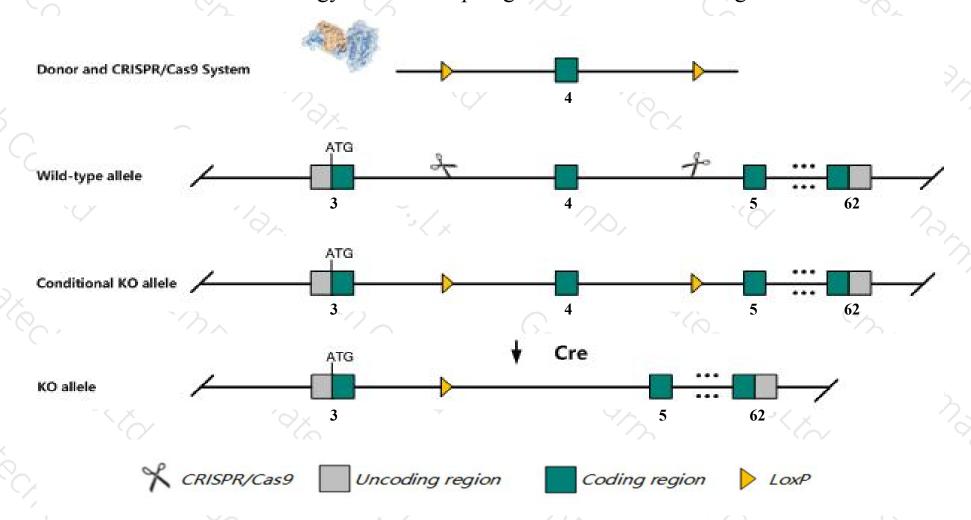
Project Overview

Project Name

Itpr1

Project type

Cas9-CKO


Strain background

C57BL/6JGpt

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Itpr1* gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Itpr1* gene has 13 transcripts. According to the structure of *Itpr1* gene, exon4 of *Itpr1-201*(ENSMUST00000032192.8) transcript is recommended as the knockout region. The region contains 71bp coding sequence. Knock out the region will result in disruption of protein function.
- In this project we use CRISPR/Cas9 technology to modify *Itpr1* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.
- The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- ➤ According to the existing MGI data, Most homozygotes for a targeted null mutation die in utero, while survivors exhibit severe ataxia, seizures, and lethality by weaning age. Homozygotes for a spontaneous mutation exhibit a postnatal phenotype similar to that of knockout mutants.
- > Transcript *Itpr1 -202,206,207,208* may not be affected.
- The *Itpr1* gene is located on the Chr6. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Itpr1 inositol 1,4,5-trisphosphate receptor 1 [Mus musculus (house mouse)]

Gene ID: 16438, updated on 7-Apr-2019

Summary

☆ ?

Official Symbol Itpr1 provided by MGI

Official Full Name inositol 1,4,5-trisphosphate receptor 1 provided by MGI

Primary source MGI:MGI:96623

See related Ensembl:ENSMUSG00000030102

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

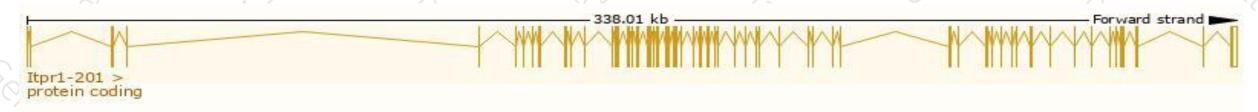
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

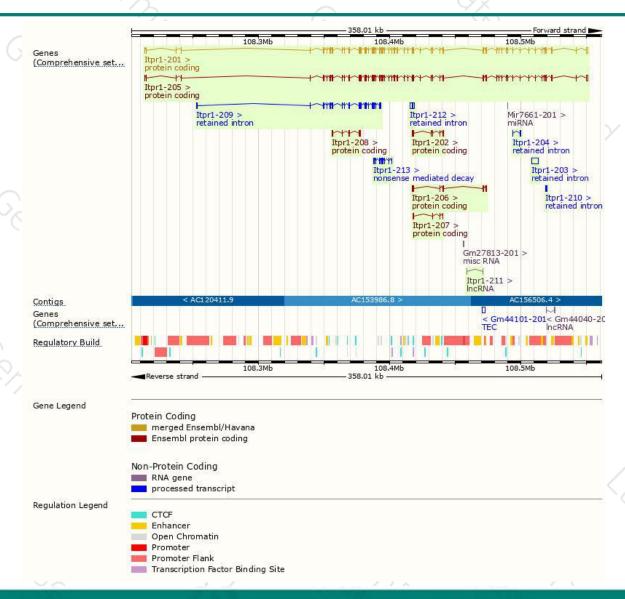
Also known as D6Pas2, Gm10429, IP3R 1, IP3R1, InsP3R, Ip3r, Itpr-1, P400, Pcp-1, Pcp1, insP3R1, opt, wblo

Expression Biased expression in cerebellum adult (RPKM 104.2), cortex adult (RPKM 29.7) and 9 other tissuesSee more

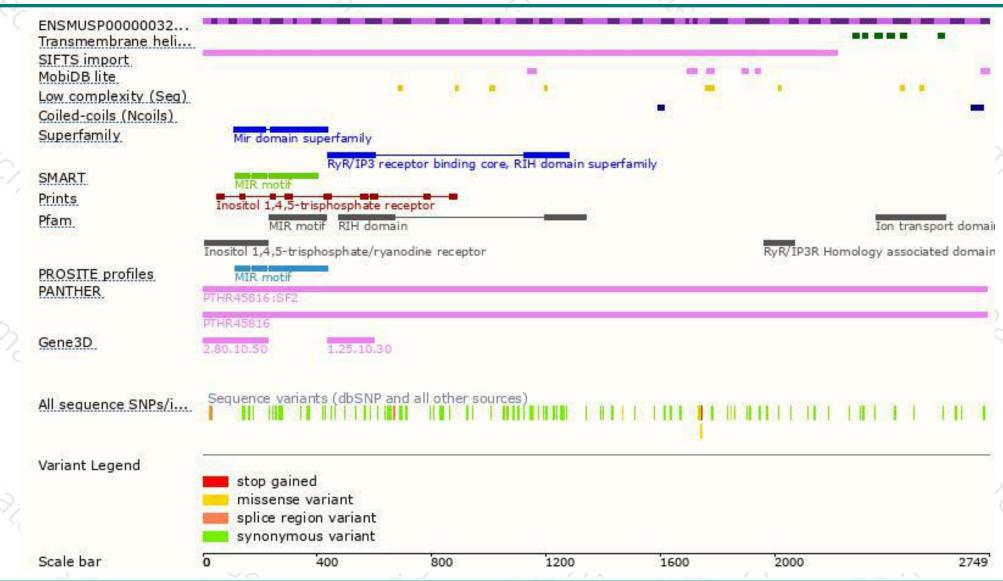
Orthologs <u>human all</u>

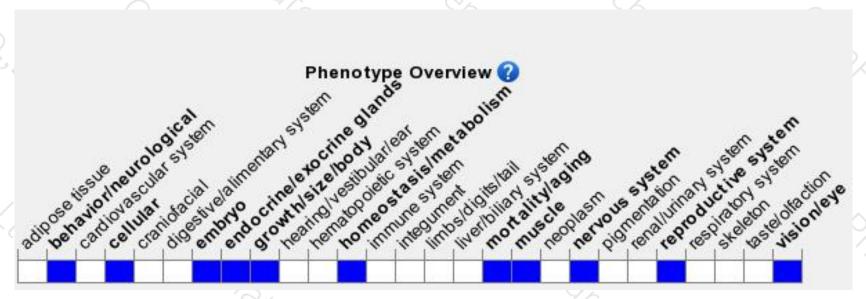

Transcript information (Ensembl)

The gene has 13 transcripts, all transcripts are shown below:


						f man	
Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Itpr1-201	ENSMUST00000032192.8	9870	2749aa	Protein coding	CCDS51869	P11881	TSL:1 GENCODE basic APPRIS P2
Itpr1-205	ENSMUST00000203615.2	9761	2748aa	Protein coding	E-	P11881	TSL:5 GENCODE basic APPRIS ALT1
ltpr1-206	ENSMUST00000203638.2	939	313aa	Protein coding	32	A0A0N4SWH7	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:
ltpr1-202	ENSMUST00000203262.2	675	225aa	Protein coding	62	A0A0N4SVN2	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:
ltpr1-208	ENSMUST00000203936.1	647	215aa	Protein coding	15	A0A0N4SWI0	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:
ltpr1-207	ENSMUST00000203687.1	454	<u>152aa</u>	Protein coding	10 -	A0A0N4SW22	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:
Itpr1-213	ENSMUST00000212125.1	1462	213aa	Nonsense mediated decay	82	A0A1D5RLA1	CDS 5' incomplete TSL:5
Itpr1-203	ENSMUST00000203288.1	4618	No protein	Retained intron	62	-	TSL:NA
ltpr1-209	ENSMUST00000203995.1	3509	No protein	Retained intron	1.5		TSL:1
Itpr1-212	ENSMUST00000205053.1	2802	No protein	Retained intron			TSL:1
ltpr1-204	ENSMUST00000203530.1	619	No protein	Retained intron	92	-	TSL:2
ltpr1-210	ENSMUST00000205005.1	486	No protein	Retained intron	62	-	TSL:3
ltpr1-211	ENSMUST00000205048.1	356	No protein	IncRNA	1.5		TSL:3

The strategy is based on the design of *Itpr1-201* transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Most homozygotes for a targeted null mutation die in utero, while survivors exhibit severe ataxia, seizures, and lethality by weaning age. Homozygotes for a spontaneous mutation exhibit a postnatal phenotype similar to that of knockout mutants.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

