Usp10 Cas9-KO Strategy

Designer: Daohua Xu

Reviewer: Yanhua Shen

Design Date: 2020-4-17

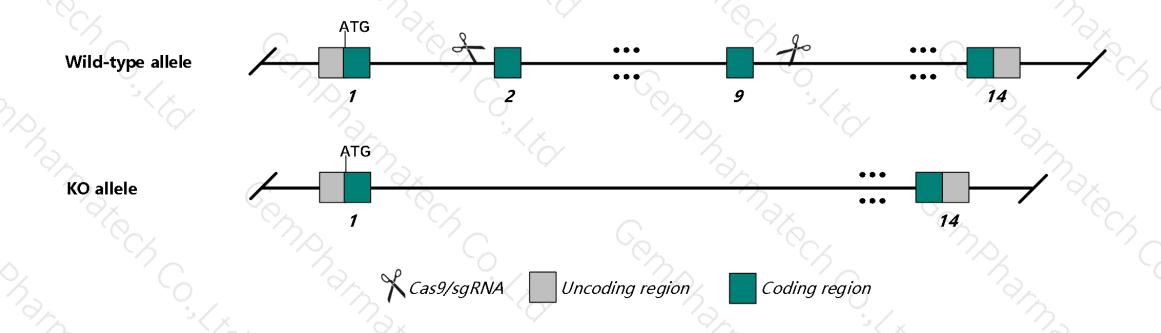
Project Overview

Project Name

Usp10

Project type

Cas9-KO


Strain background

C57BL/6J

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Usp10* gene. The schematic diagram is as follows:

Technical routes

- The *Usp10* gene has 13 transcripts. According to the structure of *Usp10* gene, exon2-exon9 of *Usp10*-210 (ENSMUST00000144458.7) transcript is recommended as the knockout region. The region contains 1618bp coding sequence. Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Usp10* gene. The brief process is as follows: sgRNA was transcribed in vitro.Cas9, sgRNA were microinjected into the fertilized eggs of C57BL/6J mice.Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6J mice.

Notice

- According to the existing MGI data, Homozygous inactivation of this gene leads to alterations in arsenite-induced stress granule formation, reactive oxygen species (ROS) production, and ROS-dependent apoptosis in mouse embryonic fibroblasts.
- > Transcript *Usp10-204* may not be affected.
- The KO region contains partial intron of the Gm20388 gene. Knockout the region may affect the function of Gm20388 gene.
- The *Usp10* gene is located on the Chr8. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Usp10 ubiquitin specific peptidase 10 [Mus musculus (house mouse)]

Gene ID: 22224, updated on 16-Sep-2018

Summary

Official Symbol Usp10 provided by MGI

Official Full Name ubiquitin specific peptidase 10 provided by MGI

Primary source MGI:MGI:894652

See related Ensembl:ENSMUSG00000031826 Vega:OTTMUSG00000026199

RefSeq status VALIDATED
Organism Mus musculus

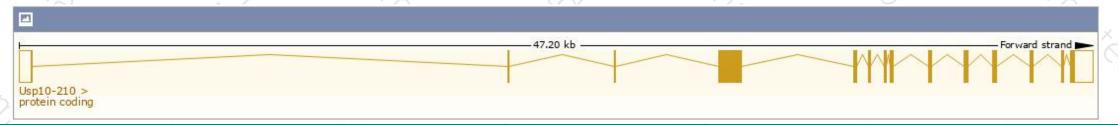
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

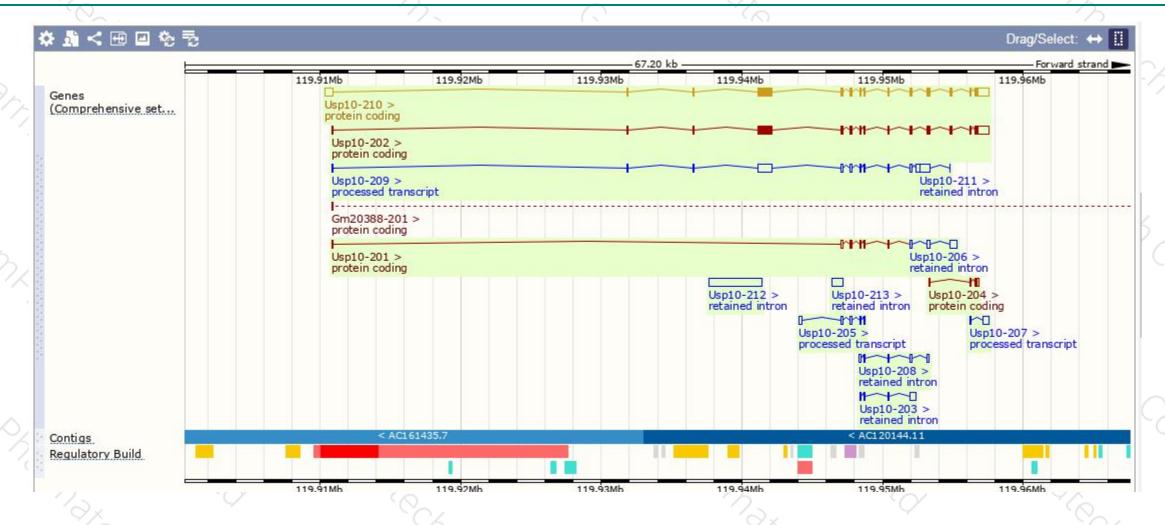
Also known as UBPO; Uchrp; mKIAA0190; 2610014N07Rik

Expression Ubiquitous expression in CNS E11.5 (RPKM 13.5), limb E14.5 (RPKM 11.2) and 28 other tissues See more

Orthologs human all

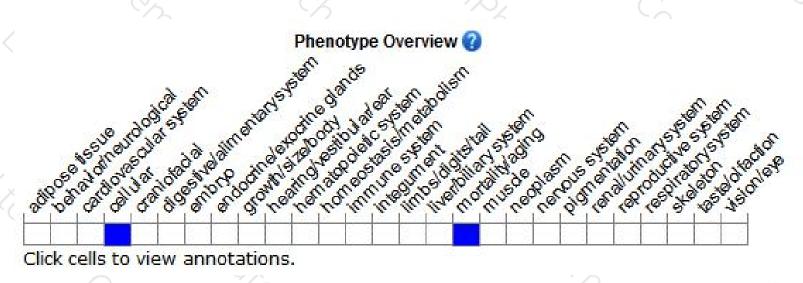

Transcript information (Ensembl)

The gene has 13 transcripts, and all transcripts are shown below:


Name 🍦	Transcript ID	bp 🍦	Protein	Biotype	CCDS 🍦	UniProt 4	RefSeq	Flags
sp10-210	ENSMUST00000144458.7	3726	<u>793aa</u>	Protein coding	CCDS40495@	<u>P52479</u> ₽	NM 009462@ NP 033488@	TSL:1 GENCODE basic APPRIS P3
sp10-202	ENSMUST00000108988.8	3274	<u>792aa</u>	Protein coding	CCDS80938&	<u>P52479</u> ₽	NM_001310630 & NP_001297559 &	TSL:1 GENCODE basic APPRIS ALT
sp10-201	ENSMUST00000108982.10	559	<u>114aa</u>	Protein coding		<u>G3X9U6</u> ₽	188	CDS 3' incomplete TSL:5
sp10-204	ENSMUST00000134729.1	424	88aa	Protein coding		G3UYQ8₽	(*)	CDS 5' incomplete TSL:3
sp10-209	ENSMUST00000143615.7	2129	No protein	Processed transcript	-	-		TSL:1
sp10-205	ENSMUST00000135210.1	467	No protein	Processed transcript	-	-	-	TSL:5
sp10-207	ENSMUST00000139648.1	459	No protein	Processed transcript	1-1	-:	-	TSL:5
sp10-212	ENSMUST00000211935.1	3723	No protein	Retained intron	- 2	2	121	TSL:NA
sp10-206	ENSMUST00000137310.1	831	No protein	Retained intron	1628	8	72	TSL:2
sp10-213	ENSMUST00000212612.1	761	No protein	Retained intron		91	1572	TSL:NA
sp10-203	ENSMUST00000125066.1	747	No protein	Retained intron		-	SE4	TSL:3
sp10-211	ENSMUST00000148767.1	717	No protein	Retained intron	(*)	-	(8)	TSL:3
sp10-208	ENSMUST00000142432.7	665	No protein	Retained intron	-	-	(*)	TSL:2

The strategy is based on the design of *Usp10*-210 transcript, The transcription is shown below

Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Homozygous inactivation of this gene leads to alterations in arsenite-induced stress granule formation, reactive oxygen species (ROS) production, and ROS-dependent apoptosis in mouse embryonic fibroblasts.

If you have any questions, you are welcome to inquire. Tel: 025-5864 1534

