

Atf2 Cas9-KO Strategy

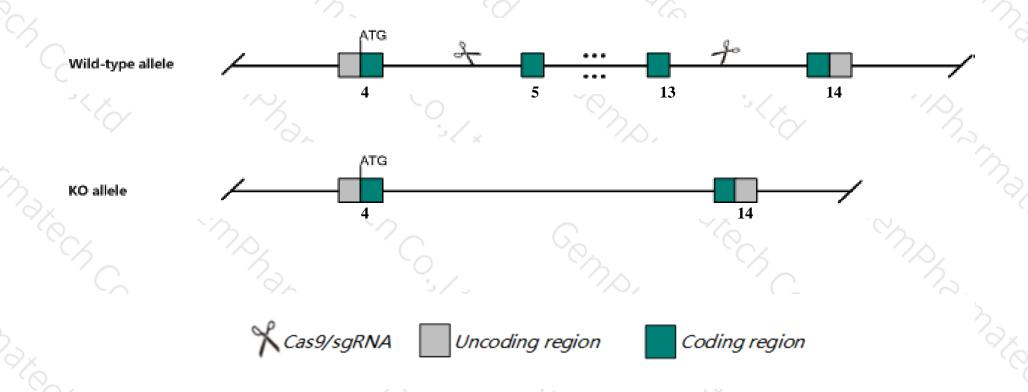
Designer: Jing Jin

Reviewer: Yang Zeng

Design Date: 2019-11-16

Project Overview

Project Name Atf2


Project type Cas9-KO

Strain background C57BL/6JGpt

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Atf2 gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Atf*2 gene has 19 transcripts. According to the structure of *Atf*2 gene, exon5-exon13 of *Atf*2-201 (ENSMUST0000055833.11) transcript is recommended as the knockout region. The region contains 1189bp coding sequence. Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Atf*2 gene. The brief process is as follows: sgRNA was transcribed in vitro.Cas9 and sgRNA were microinjected into the fertilized eggs of C57BL/6JGpt mice.Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.

Notice

- ➤ According to the existing MGI data, Homozygous mutation of this gene results in increased postnatal lethality, skeletal development defects, runting, decreased hearing, inner ear and brain abnormalities, hyperactivity, and ataxia.
- ➤ Transcript *Atf2-209/213/217* may not be affected. The KO region overlaps with *Gm27421* gene. Knockout the region may affect the function of *Gm27421* gene.
- > The *Atf2* gene is located on the Chr2. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- ➤ This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Atf2 activating transcription factor 2 [Mus musculus (house mouse)]

Gene ID: 11909, updated on 27-Aug-2019

Summary

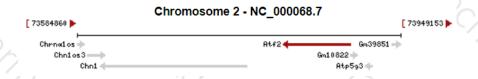
Official Symbol Atf2 provided by MGI

Official Full Name activating transcription factor 2 provided by MGI

Primary source MGI:MGI:109349

See related Ensembl: ENSMUSG00000027104

Gene type protein coding
RefSeq status VALIDATED
Organism <u>Mus musculus</u>

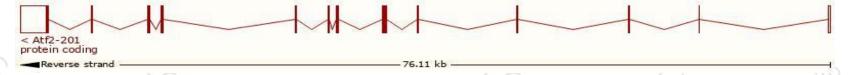

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

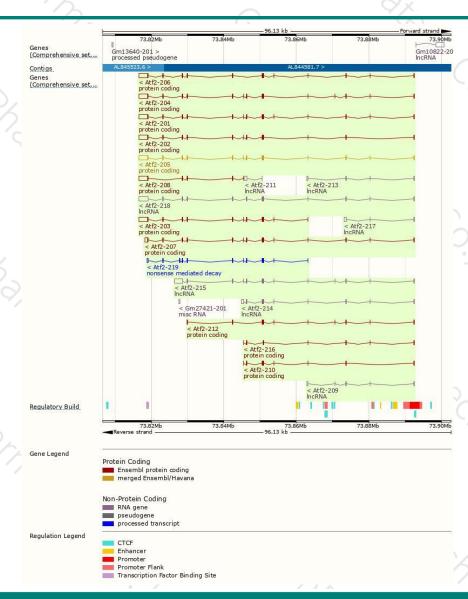
Also known as mXBP; Atf-2; Creb2; CRE-BP; D18875; D130078H02Rik; Tg(Gzma-Klra1)7Wum

Expression Ubiquitous expression in CNS E14 (RPKM 7.9), frontal lobe adult (RPKM 7.8) and 28 other tissues See more

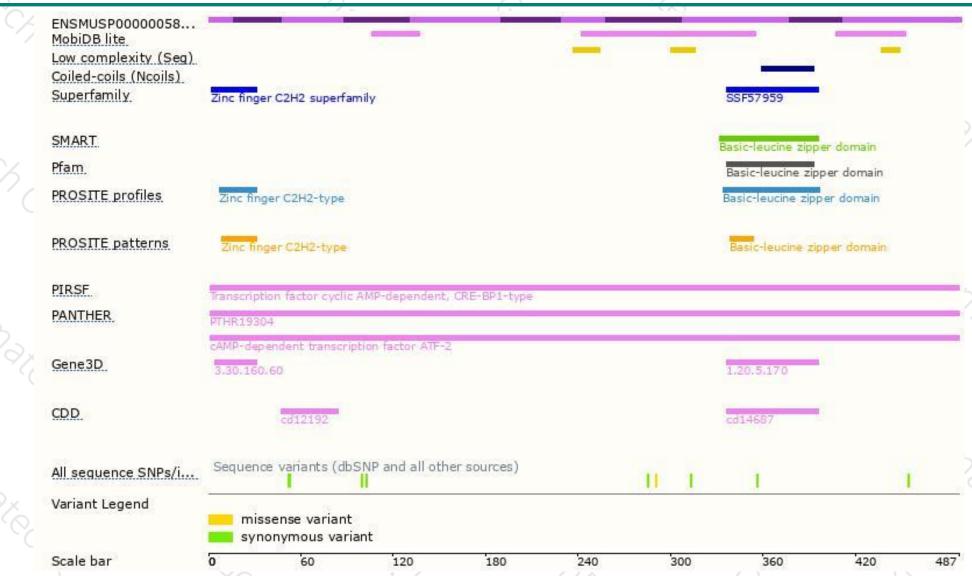
Orthologs <u>human</u> all

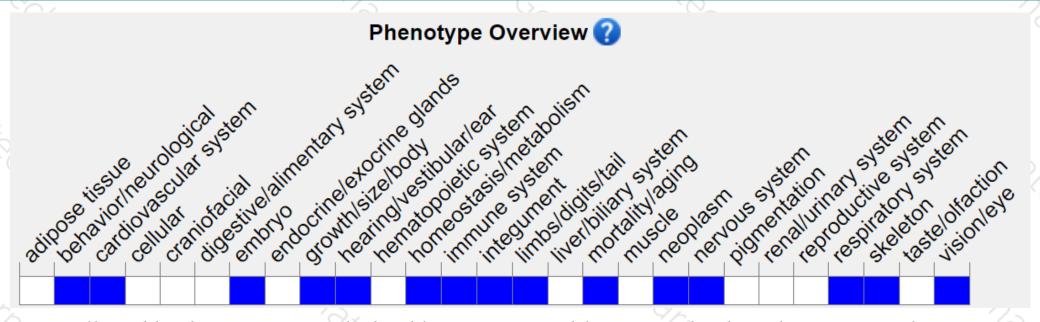

Transcript information (Ensembl)

The gene has 19 transcripts, all transcripts are shown below:


Name 🍦	Transcript ID 🗼	bp 🌲	Protein	Translation ID 👙	Biotype	CCDS	UniProt	Flags
Atf2-201	ENSMUST00000055833.11	4210	<u>487aa</u>	ENSMUSP00000058521.5	Protein coding	CCDS16134®	<u>P16951</u> ₽	TSL:5 GENCODE basic APPRIS P3
Atf2-204	ENSMUST00000112007.7	4195	<u>447aa</u>	ENSMUSP00000107638.1	Protein coding	CCDS16135®	P16951& Q543G2&	TSL:1 GENCODE basic
Atf2-205	ENSMUST00000112010.8	4037	<u>447aa</u>	ENSMUSP00000107641.2	Protein coding	CCDS16135®	<u>P16951</u> ₽ <u>Q543G2</u> ₽	TSL:1 GENCODE basic
Atf2-202	ENSMUST00000090802.10	4016	<u>447aa</u>	ENSMUSP00000088311.4	Protein coding	CCDS16135®	P16951₽ Q543G2₽	TSL:5 GENCODE basic
Atf2-206	ENSMUST00000112016.8	3943	389aa	ENSMUSP00000107647.2	Protein coding	CCDS71076®	P16951& Q640L6&	TSL:1 GENCODE basic APPRIS ALT2
Atf2-203	ENSMUST00000100009.10	3936	<u>487aa</u>	ENSMUSP00000097588.4	Protein coding	CCDS16134®	<u>P16951</u> ₽	TSL:1 GENCODE basic APPRIS P3
Atf2-207	ENSMUST00000112017.7	2396	<u>487aa</u>	ENSMUSP00000107648.1	Protein coding	CCDS16134®	<u>P16951</u> ₽	TSL:5 GENCODE basic APPRIS P3
Atf2-208	ENSMUST00000124737.7	3151	<u>212aa</u>	ENSMUSP00000114828.1	Protein coding	-	F6Z2B2₽	CDS 5' incomplete TSL:3
Atf2-212	ENSMUST00000136958.7	935	<u>207aa</u>	ENSMUSP00000118357.1	Protein coding	-	A2AQE9₽	CDS 3' incomplete TSL:3
Atf2-210	ENSMUST00000128531.7	863	<u>228aa</u>	ENSMUSP00000118560.1	Protein coding	-	A2AQF0₽	CDS 3' incomplete TSL:3
Atf2-216	ENSMUST00000154456.7	775	<u>146aa</u>	ENSMUSP00000118719.1	Protein coding	-	A2AQF1®	CDS 3' incomplete TSL:5
Atf2-219	ENSMUST00000173010.7	1658	<u>377aa</u>	ENSMUSP00000133632.1	Nonsense mediated decay	-	G3UXC3₽	TSL:5
Atf2-218	ENSMUST00000156455.7	4003	No protein	-	IncRNA	-	-	TSL:1
Atf2-215	ENSMUST00000143714.7	3641	No protein	-	IncRNA	-	-	TSL:1
Atf2-214	ENSMUST00000141050.7	1604	No protein	-	IncRNA	-	-	TSL:1
Atf2-209	ENSMUST00000125159.7	660	No protein	-	IncRNA	-	-	TSL:2
Atf2-211	ENSMUST00000129555.1	658	No protein	-	IncRNA	-	-	TSL:5
Atf2-213	ENSMUST00000138098.7	656	No protein	-	IncRNA	-	-	TSL:2
Atf2-217	ENSMUST00000154965.1	645	No protein	-	IncRNA	-	-	TSL:2

The strategy is based on the design of *Atf2-201* transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue. Data quoted from MGI database (http://www.informatics.jax.org/).

According to the existing MGI data, Homozygous mutation of this gene results in increased postnatal lethality, skeletal development defects, runting, decreased hearing, inner ear and brain abnormalities, hyperactivity, and ataxia.

If you have any questions, you are welcome to inquire. Tel: 025-5864 1534

