Pld1 Cas9-KO Strategy

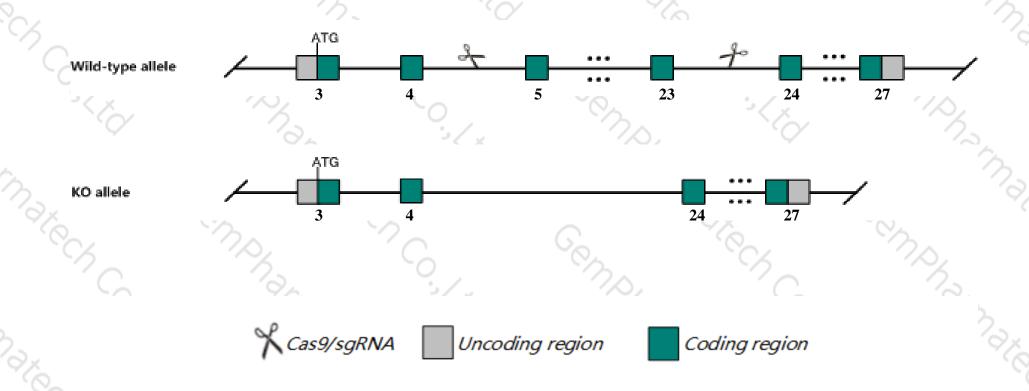
Designer: Bingxuan Li

Reviewer: JiaYu

Design Date: 2020-3-20

Project Overview

Project Name Pld1


Project type Cas9-KO

Strain background C57BL/6JGpt

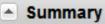
Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Pld1* gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Pld1* gene has 10 transcripts. According to the structure of *Pld1* gene, exon5-exon23 of *Pld1-202*(ENSMUST00000120834.7) transcript is recommended as the knockout region. The region contains 2191bp coding sequence Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Pld1* gene. The brief process is as follows: sgRNA was transcribed in vitro.Cas9 and sgRNA were microinjected into the fertilized eggs of C57BL/6JGpt mice.Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.

Notice


- ➤ According to the existing MGI data, Homozygotes for a null allele show reduced tumor growth and angiogenesis. Homozygotes for a second null allele show abnormal hepatic autophagy after food restriction. Homozygotes for a third null allele show altered platelet activation and protection from thrombosis and ischemic brain injury.
- \succ The insertion site of 5-terminal Loxp is in the regulatory region of Pld1, which may affect the regulation of Pld1.
- ➤ The *Pld1* gene is located on the Chr3. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- ➤ This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Pld1 phospholipase D1 [Mus musculus (house mouse)]

Gene ID: 18805, updated on 14-Aug-2019

Official Symbol Pld1 provided by MGI

Official Full Name phospholipase D1 provided by MGI

Primary source MGI:MGI:109585

See related Ensembl:ENSMUSG00000027695

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

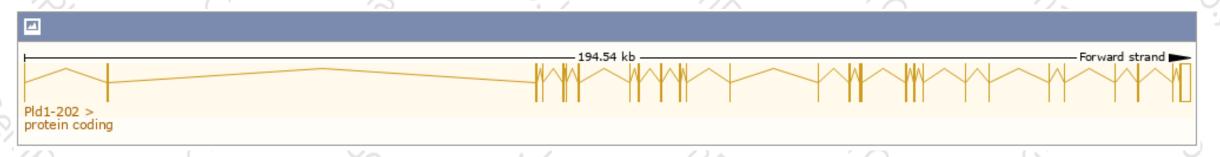
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;

Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus

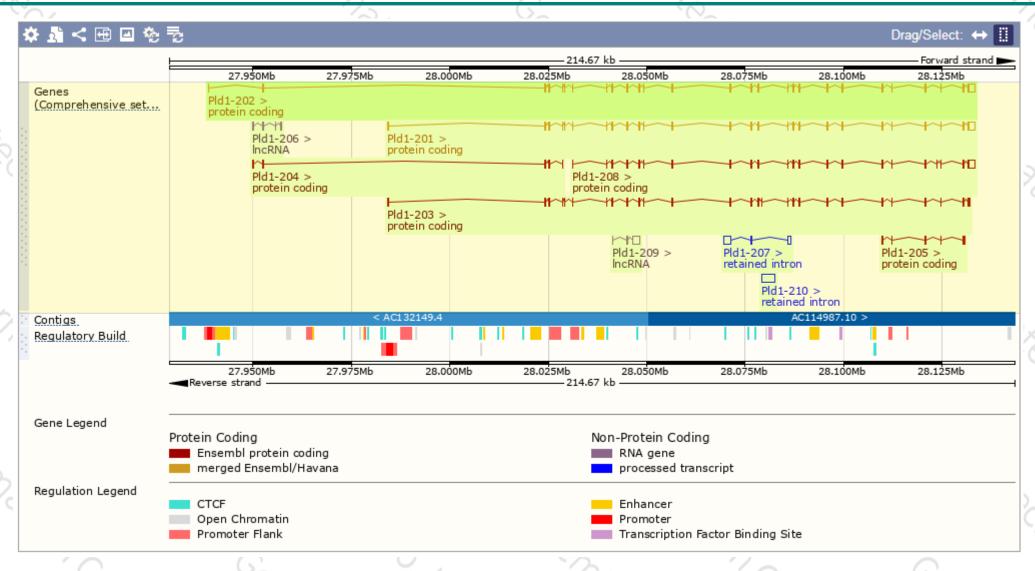
Also known as Pld1a; Pld1b; mPLD1; C85393; AA536939

Expression Broad expression in large intestine adult (RPKM 8.9), bladder adult (RPKM 4.5) and 25 other tissues See more

Orthologs human all

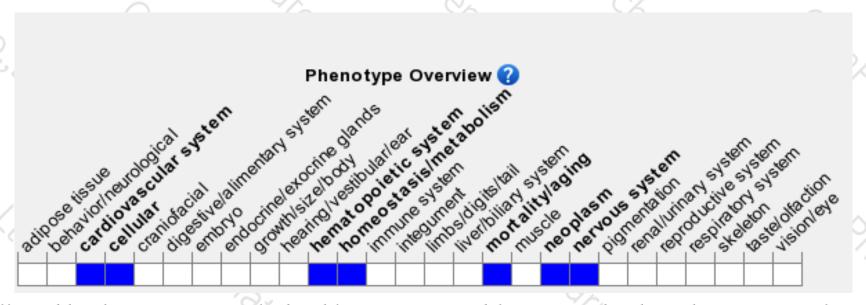

Transcript information (Ensembl)

The gene has 10 transcripts, all transcripts are shown below:


Show/hide columns (1 hidden)							Filter	X L
Name 🌲	Transcript ID	bp 🌲	Protein	Biotype	CCDS	UniProt 🍦	Flags	
Pld1-202	ENSMUST00000120834.7	4849	<u>1036aa</u>	Protein coding	<u>CCDS17275</u> ₽	Q6NVF2₽	TSL:1 GENCODE basic	APPRIS P2
Pld1-201	ENSMUST00000067757.10	4804	<u>1036aa</u>	Protein coding	CCDS17275 ₽	Q6NVF2₽	TSL:1 GENCODE basic	APPRIS P2
Pld1-208	ENSMUST00000148827.7	4239	<u>871aa</u>	Protein coding	-	F6WKY8₽	CDS 5' incomplete	TSL:1
Pld1-203	ENSMUST00000123539.7	3732	<u>1074aa</u>	Protein coding	-	<u>D6RH77</u> ₽	TSL:5 GENCODE basic	APPRIS ALT2
Pld1-204	ENSMUST00000125338.7	653	<u>126aa</u>	Protein coding	-	<u>D3Z2V2</u> ₺	CDS 3' incomplete	TSL:3
Pld1-205	ENSMUST00000126594.2	603	<u>201aa</u>	Protein coding	-	F6QJR6@	CDS 5' and 3' incomplete	TSL:2
Pld1-210	ENSMUST00000195622.1	3319	No protein	Retained intron	-	-	TSL:NA	
Pld1-207	ENSMUST00000131842.1	2865	No protein	Retained intron	-	-	TSL:1	
Pld1-209	ENSMUST00000149017.2	1824	No protein	IncRNA	-	-	TSL:5	
Pld1-206	ENSMUST00000127139.7	555	No protein	IncRNA	-	-	TSL:1	

The strategy is based on the design of *Pld1-202* transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Homozygotes for a null allele show reduced tumor growth and angiogenesis.

Homozygotes for a second null allele show abnormal hepatic autophagy after food restriction. Homozygotes for a third null allele show altered platelet activation and protection from thrombosis and ischemic brain injury.

If you have any questions, you are welcome to inquire.

Tel: 025-5864 1534

