

Nin Cas9-CKO Strategy

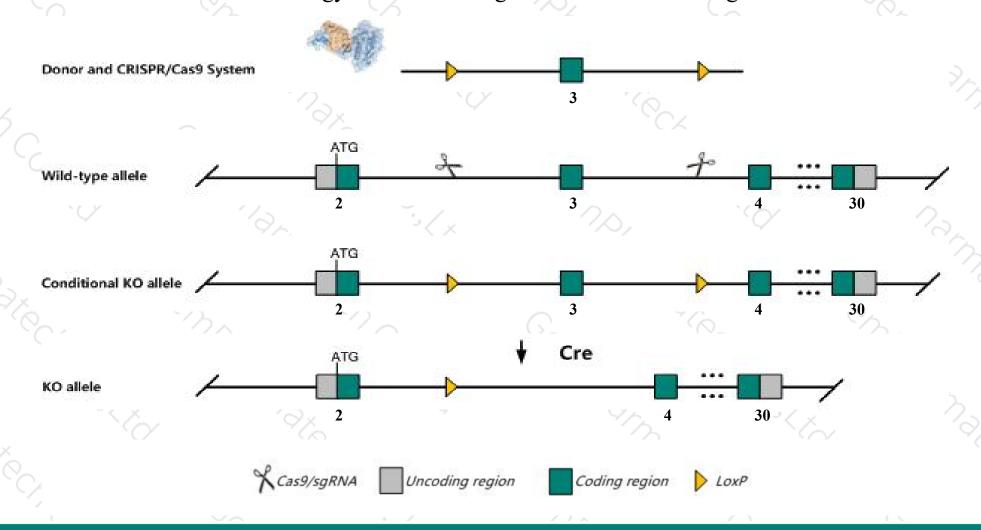
Designer:Xiaojing Li

Reviewer:JiaYu

Design Date:2020-2-14

Project Overview

Project Name Nin


Project type Cas9-CKO

Strain background C57BL/6J

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Nin gene. The schematic diagram is as follows:

Technical routes

- The *Nin* gene has 17 transcripts. According to the structure of *Nin* gene, exon3 of *Nin-211*(ENSMUST00000222237.1) transcript is recommended as the knockout region. The region contains 82bp coding sequence. Knock out the region will result in disruption of protein function.
- In this project we use CRISPR/Cas9 technology to modify *Nin* gene. The brief process is as follows:sgRNA was transcribed in vitro, donor vector was constructed.Cas9, sgRNA and Donor were microinjected into the fertilized eggs of C57BL/6J mice.Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6J mice.
- > The flox mice was knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- According to the existing MGI data, mice homozygous for a knock-out allele exhibit partial pre- and postnatal lethality, thinner skin, delayed skin barrier formation, impaired skin barrier function, impaired differentiation of suprabasal cells, and defects in mitotic spindle orientation, desmosome assembly and lamellar body secretion.
- The *Nin* gene is located on the Chr12. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Nin ninein [Mus musculus (house mouse)]

Gene ID: 18080, updated on 10-Oct-2019

Summary

Official Symbol Nin provided by MGI

Official Full Name ninein provided by MGI

Primary source MGI:MGI:105108

See related Ensembl: ENSMUSG00000021068

Gene type protein coding
RefSeq status VALIDATED

Organism Mus musculus

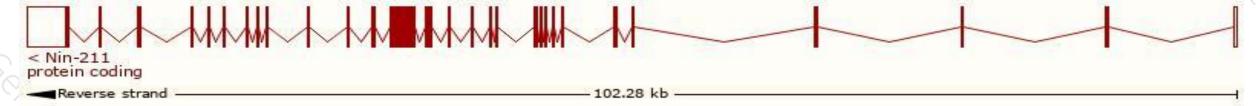
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;

Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus

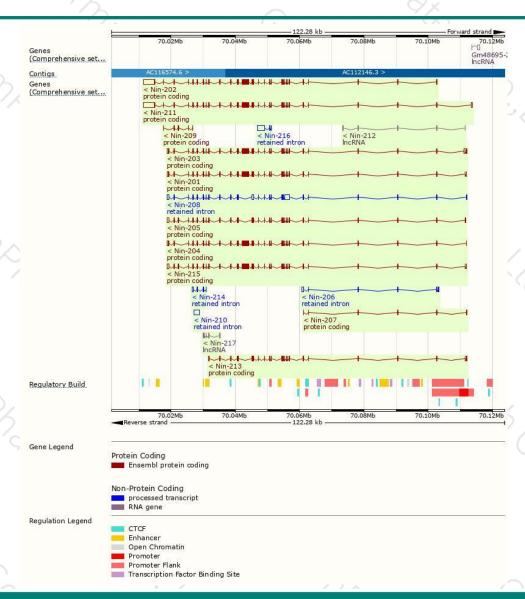
Also known as Al385615; AU024711; mKIAA1565; 3110068G20Rik

Expression Ubiquitous expression in CNS E18 (RPKM 5.4), CNS E14 (RPKM 4.0) and 23 other tissues See more

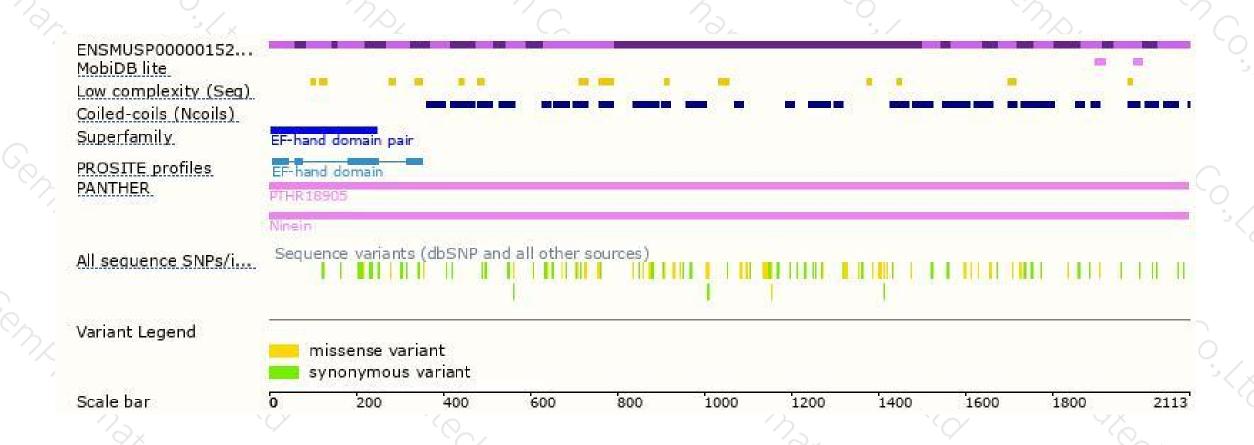
Orthologs human all

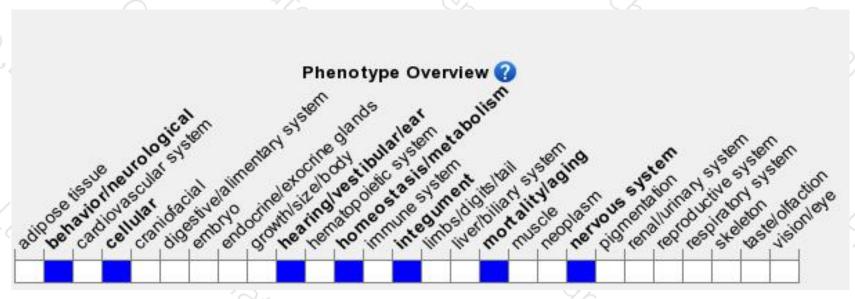

Transcript information (Ensembl)

The gene has 17 transcripts, all transcripts are shown below:


Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Nin-211	ENSMUST00000222237.1	9919	2113aa	Protein coding	CCDS36468	Q61043	TSL:5 GENCODE basic APPRIS P4
Nin-202	ENSMUST00000085314.10	9675	2113aa	Protein coding	CCDS36468	Q61043	TSL:1 GENCODE basic APPRIS P4
Nin-203	ENSMUST00000095666.12	7183	2035aa	Protein coding	CCDS36469	Q61043	TSL:5 GENCODE basic APPRIS ALT2
Nin-201	ENSMUST00000021468.13	6708	2035aa	Protein coding	CCDS36469	Q61043	TSL:1 GENCODE basic APPRIS ALT2
Nin-204	ENSMUST00000169074.1	6636	2035aa	Protein coding	CCDS36469	Q61043	TSL:1 GENCODE basic APPRIS ALT2
Nin-215	ENSMUST00000223257.1	6744	<u>1979aa</u>	Protein coding	-	A0A1Y7VNC5	TSL:1 GENCODE basic APPRIS ALT2
Nin-205	ENSMUST00000220689.1	4723	1272aa	Protein coding	<u> </u>	Q61043	TSL:1 GENCODE basic APPRIS ALT2
Nin-213	ENSMUST00000222835.1	3181	996aa	Protein coding		A0A1Y7VJC3	CDS 3' incomplete TSL:1
Nin-207	ENSMUST00000221275.1	729	178aa	Protein coding	15	A0A1Y7VIQ3	CDS 3' incomplete TSL:3
Nin-209	ENSMUST00000221579.1	521	80aa	Protein coding	-	A0A1Y7VJS5	CDS 5' incomplete TSL:3
Nin-208	ENSMUST00000221486.1	5655	No protein	Retained intron	<u> </u>	-	TSL:2
Nin-216	ENSMUST00000223316.1	2490	No protein	Retained intron	-	20	TSL:1
Nin-210	ENSMUST00000222137.1	1650	No protein	Retained intron	15		TSL:NA
Nin-206	ENSMUST00000221141.1	1397	No protein	Retained intron	-	*	TSL:1
Nin-214	ENSMUST00000223048.1	656	No protein	Retained intron)/ <u>-</u>	2	TSL:2
Nin-212	ENSMUST00000222466.1	846	No protein	IncRNA	12	2	TSL:3
Nin-217	ENSMUST00000223469.1	488	No protein	IncRNA	1.7	-	TSL:3

The strategy is based on the design of Nin-211 transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

If you have any questions, you are welcome to inquire.

Tel: 025-5864 1534

