

Flot1 Cas9-KO Strategy

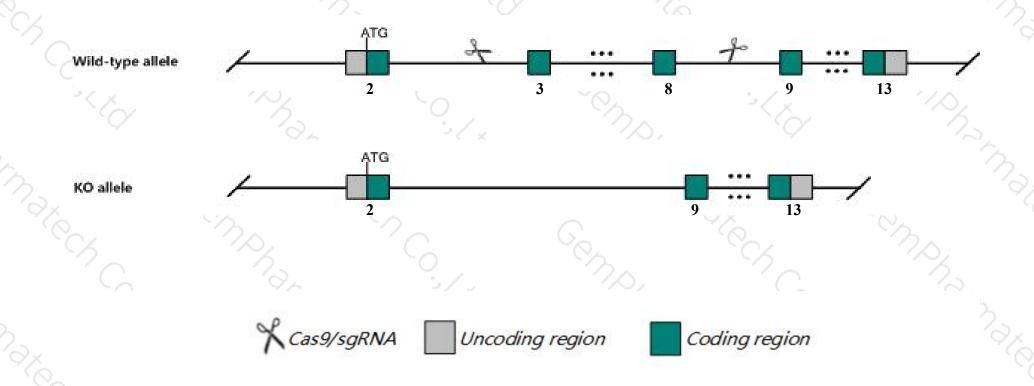
Designer:Xueting Zhang

Reviewer; Yanhua Shen

Date:2020-1-13

Project Overview

Project Name Flot1


Project type Cas9-KO

Strain background C57BL/6J

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Flot1* gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Flot1* gene has 11 transcripts. According to the structure of *Flot1* gene, exon3-exon8 of *Flot1-201* (ENSMUST0000001569.14) transcript is recommended as the knockout region. The region contains 680bp coding sequence Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Flot1* gene. The brief process is as follows: sgRNA was transcribed in vitro.Cas9 and sgRNA were microinjected into the fertilized eggs of C57BL/6J mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6J mice.

Notice

- > According to the existing MGI data, Mice homozygous for a knock-out allele exhibit impaired neutrophil recruitment.
- ➤ Transcript *Flot1*-204&206&211 may not be affected.
- The knockout region is near to the C-terminal of *Ier3* gene, this strategy may influence the regulatory function of the C-terminal of *Ier3* gene.
- The *Flot1* gene is located on the Chr17. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Flot1 flotillin 1 [Mus musculus (house mouse)]

Gene ID: 14251, updated on 8-Dec-2019

Summary

☆ ?

Official Symbol Flot1 provided by MGI

Official Full Name flotillin 1 provided by MGI

Primary source MGI:MGI:1100500

See related Ensembl: ENSMUSG00000059714

Gene type protein coding
RefSeq status PROVISIONAL
Organism Mus musculus

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;

Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus

Also known as reggie-2

Expression Ubiquitous expression in bladder adult (RPKM 47.3), heart adult (RPKM 42.6) and 28 other tissues See more

Orthologs human all

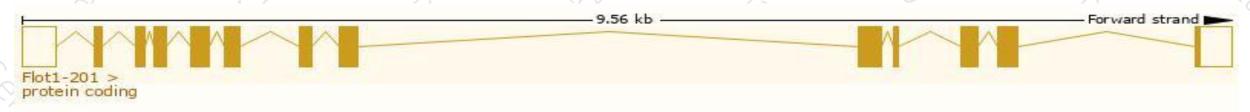
Genomic context

Location: 17; 17 B1

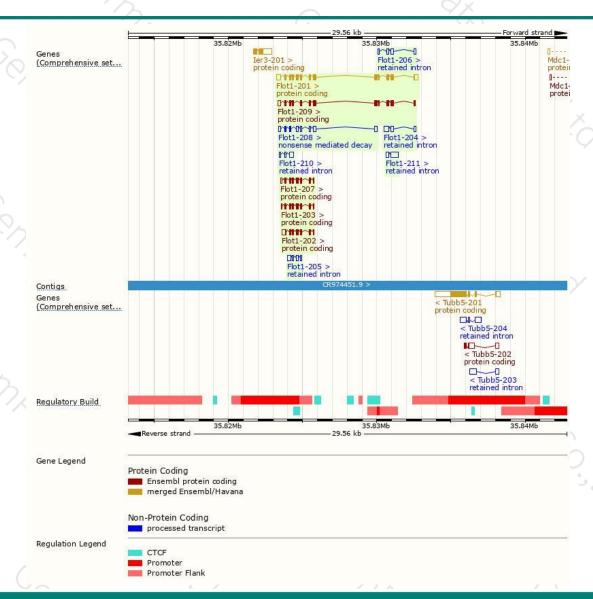
See Flot1 in Genome Data Viewer

Exon count: 14

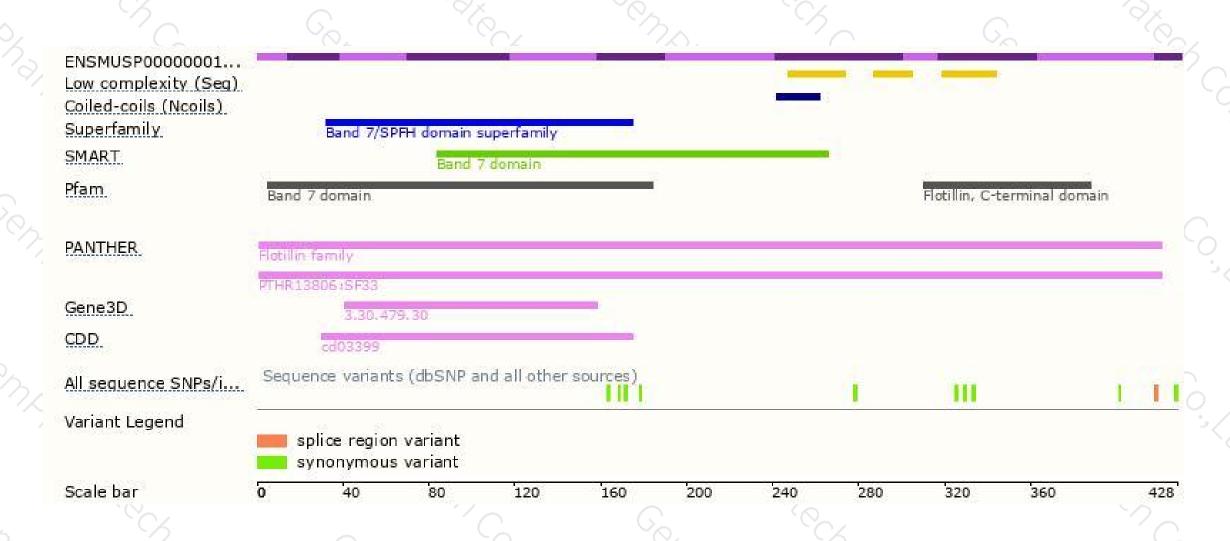
Annotation release	Status	Assembly	Chr	Location
108	current	GRCm38.p6 (GCF_000001635.26)	17	NC_000083.6 (3582332035832789)
Build 37.2	previous assembly	MGSCv37 (GCF_000001635.18)	17	NC_000083.5 (3596030235969732)

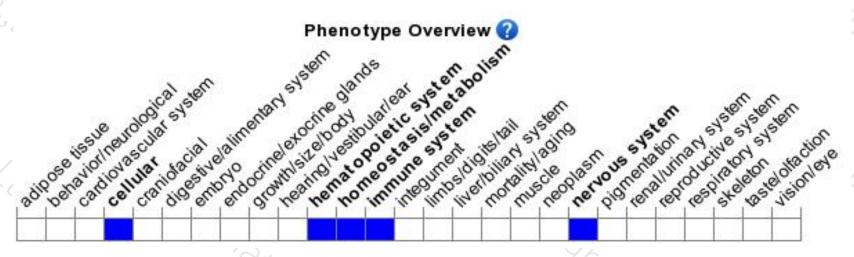

Transcript information (Ensembl)

The gene has 11 transcripts, all transcripts are shown below:


Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Flot1-201	ENSMUST00000001569.14	1825	428aa	Protein coding	CCDS28705	O08917 Q54014	TSL:1 GENCODE basic APPRIS P1
Flot1-209	ENSMUST00000174080.7	1383	380aa	Protein coding	5 5	G3UYU4	TSL:5 GENCODE basic
Flot1-202	ENSMUST00000172846.1	805	<u>192aa</u>	Protein coding	49	G3UZZ5	CDS 3' incomplete TSL:2
Flot1-207	ENSMUST00000173493.7	697	<u>192aa</u>	Protein coding	29	<u>G3UZZ5</u>	CDS 3' incomplete TSL:5
Flot1-203	ENSMUST00000173147.7	651	<u>196aa</u>	Protein coding	56	G3UWW8	CDS 3' incomplete TSL:5
Flot1-208	ENSMUST00000173628.7	948	<u>40aa</u>	Nonsense mediated decay	+8	G3XA73	TSL:5
Flot1-211	ENSMUST00000174297.1	682	No protein	Retained intron	10	-	TSL:1
Flot1-204	ENSMUST00000173273.1	592	No protein	Retained intron	29	120	TSL:2
Flot1-205	ENSMUST00000173337.1	538	No protein	Retained intron	56	7	TSL:3
Flot1-206	ENSMUST00000173381.7	502	No protein	Retained intron	#8	2-	TSL:2
Flot1-210	ENSMUST00000174227.1	405	No protein	Retained intron	4 8	4-	TSL:3
	7/ 1/		- / / /			N 27	V v

The strategy is based on the design of Flot1-201 transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Mice homozygous for a knock-out allele exhibit impaired neutrophil recruitment.

If you have any questions, you are welcome to inquire.

Tel: 025-5864 1534

