Genotyping Report

Strain ID	T057823	Strain Type	KI（Cas9）	Genetic Background	C57BL／6JGpt
Designer	Tianjiao Wang	Gene Name	Rosa26－CAG－LSL－EGFP－3HA－WPRE－polyA		

1．Strategy of Genotyping

Wild type：（1）PCR reaction obtains none band；（2）PCR reaction obtains a WT band．
Heterozygote：（1）PCR reaction obtains a Targeted band；（2）PCR reaction obtains a WT band．
Homozygote：（1）PCR reaction obtains a Targeted band；（2）PCR reaction obtains none band．
Note：The sizes of WT and Targeted band are shown below．For（2）PCR reaction，because the WT band is much smaller than the target band，it is likely to produce dominant amplification，the reaction is only used to judge whether there is a WT allele．

2．Primer Information

PCR No．	Primer No．	Sequence	Band Size
（1）5＇arm	Rosa26－tF1	CCCAAAGTCGCTCTGAGTTGTTA	WT：0bp Targeted：393bp
	H11－CAG－5tR1	TCAATGGAAAGTCCCTATTGGCGT	
	Rosa26－tF1	CCCAAAGTCGCTCTGAGTTGTTA	WT：479bp Targeted：5492bp
	Rosa26－tR1	TCGGGTGAGCATGTCTTTAATCT	

3．Gel Image \＆Conclusion

江苏集萃药康生物科技股份有限气司

GemPharmatech Co．，Ltd
（1）Control（WT）：It is an important reference mark for whether the PCR reaction is successful and whether the product band position and size meet the theoretical requirements．
（2）Control（B）：PCR amplification was performed without template in the PCR reagent to monitor whether the reagent was contaminated．

4．PCR Condition

PCR Reaction Component

Seg．	reaction component	Volume $(\mu \mathrm{l})$
1	$2 \times$ Rapid Taq Master Mix（Vazyme P222）	12.5
2	ddH2O	9.5
3	Primer A（10pmol $/ \mu \mathrm{l})$	1
4	Primer $\mathrm{B}(10 \mathrm{pmol} / \mu \mathrm{l})$	1
5	Template $(20 \sim 80 \mathrm{ng} / \mu \mathrm{l})$	1

PCR program I priority selection

Seg．	Temp．	Time	Cycle
$1 \sim$	$95^{\circ} \mathrm{C}$	5 min	3
2	$98^{\circ} \mathrm{C}$	30s	$20 \times$
3	$65^{\circ} \mathrm{C}^{*}\left(-0.5^{\circ} \mathrm{C} /\right.$ cycle $)$	30 s	
4	$72^{\circ} \mathrm{C}$	45s＊	
5	$98^{\circ} \mathrm{C}$	30s	$15 \times$
6	$55^{\circ} \mathrm{C}^{*}$	30s	
7	$72^{\circ} \mathrm{C}$	45s＊	
8	$72^{\circ} \mathrm{C}$	5 min	，
9	$10^{\circ} \mathrm{C}$	hold	\bigcirc
PCR program II the second choice			
Seg．	Temp．	Time	Cycle
1	$95^{\circ} \mathrm{C}$	5 min	
2	$98^{\circ} \mathrm{C}$	30 s	$35 \times$
3	$58^{\circ}{ }^{*}$	30s	
4	$72^{\circ} \mathrm{C}$	45 s ＊	
5	$72^{\circ} \mathrm{C}$	5 min	x
6	$10^{\circ} \mathrm{C}$	hold	O

Note＊：Annealing temperature and extension time can be determined according to the actual amplification situation and amplification enzyme efficiency．

