

Hmga1 Cas9-CKO Strategy

Designer: Daohua Xu

Reviewer: Huimin Su

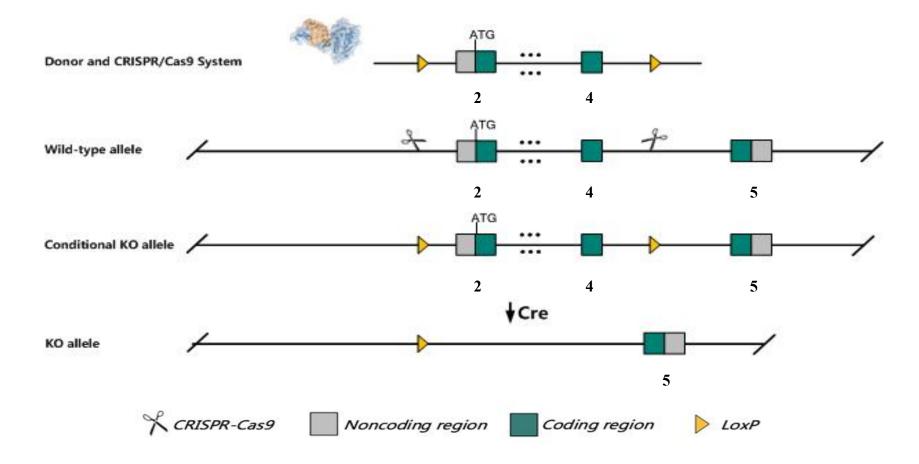
Design Date: 2019-10-22

Overview

Target Gene Name


• Hmga1

Project Type


• Cas9-CKO

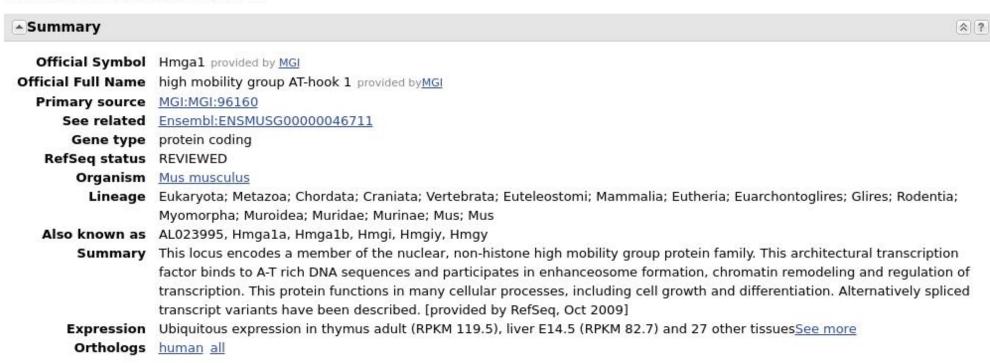
Genetic Background

• C57BL/6JGpt

Strain Strategy

Schematic representation of CRISPR-Cas9 engineering used to edit the *Hmga1* gene.

Technical Information


- The *Hmga1* gene has 17 transcripts. According to the structure of *Hmga1* gene, exon2-exon4 of *Hmga1*-213 (ENSMUST00000231874.2) transcript is recommended as the knockout region. The region contains start codon ATG.Knock out the region will result in disruption of protein function.
- In this project we use CRISPR-Cas9 technology to modify *Hmga1* gene. The brief process is as follows: CRISPR-Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and on-target amplicon sequencing. A stable F1-generation mouse strain was obtained by mating positive F0-generation mice with C57BL/6JGpt mice and confirmation of the desired mutant allele was carried out by PCR and on-target amplicon sequencing.
- The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Gene Information

Hmga1 high mobility group AT-hook 1 [Mus musculus (house mouse)]

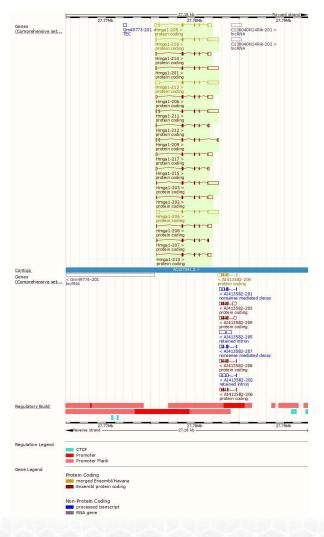
Gene ID: 15361, updated on 12-Jul-2022

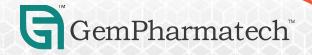
Source: https://www.ncbi.nlm.nih.gov/

Transcript Information

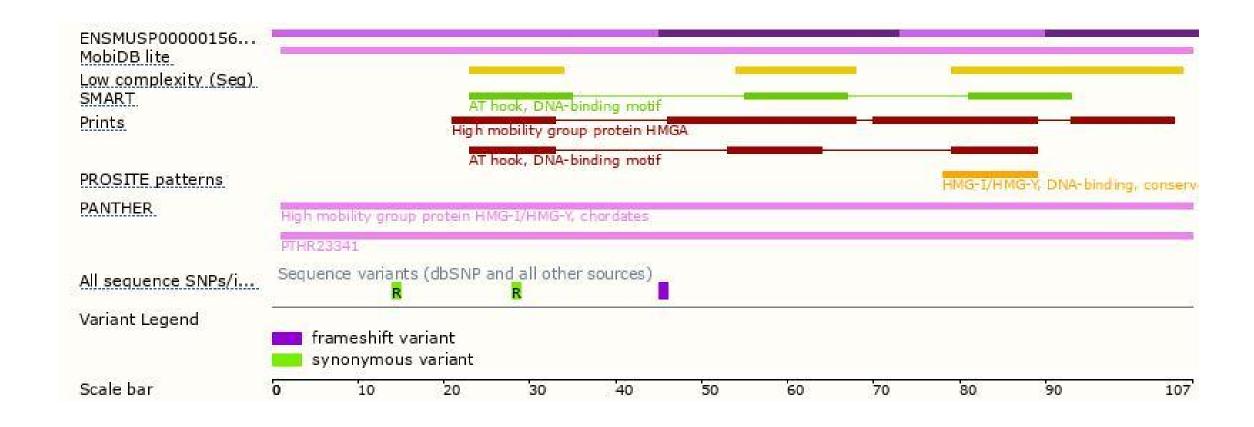
The gene has 17 transcripts, all transcripts are shown below:

Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Hmga1-213	ENSMUST00000231874.2	2001	107aa	Protein coding	CCDS28564		GENCODE basic ,
Hmga1-204	ENSMUST00000118570.2	1898	<u>96aa</u>	Protein coding	CCDS50044		TSL:1 , GENCODE basic , APPRIS P2 ,
Hmgal-211	ENSMUST00000231825.2	1717	96aa	Protein coding	CCDS50044		GENCODE basic , APPRIS P2 ,
Hmgal-216	ENSMUST00000232265.2	1681	107aa	Protein coding	CCDS28564		GENCODE basic ,
Hmga1-201	ENSMUST00000114888.11	1631	96aa	Protein coding	CCD550044		TSL:1 , GENCODE basic , APPRIS P2 ,
Hmga1-205	ENSMUST00000118599.9	1045	107aa	Protein coding	CCD528564		TSL:3 , GENCODE basic ,
Hmga1-206	ENSMUST00000119486.9	1030	107aa	Protein coding	CCDS28564		TSL:2 , GENCODE basic ,
Hmga1-217	ENSMUST00000232552.2	917	96aa	Protein coding	CCDS50044		GENCODE basic , APPRIS P2 ,
Hmga1-208	ENSMUST00000231358.2	805	96aa	Protein coding	CCDS50044		GENCODE basic , APPRIS P2 ,
Hmga1-214	ENSMUST00000232013.2	805	107aa	Protein coding	CCDS28564		GENCODE basic ,
Hmga1-203	ENSMUST00000117600.9	1595	106aa	Protein coding			TSL:1 , GENCODE basic ,
Hmga1-202	ENSMUST00000117254.9	916	95aa	Protein coding	-		TSL:2 , GENCODE basic , APPRIS ALT1 ,
Hmga1-210	ENSMUST00000231796.2	706	<u>111aa</u>	Protein coding	-		GENCODE basic ,
Hmga1-209	ENSMUST00000231780.2	619	<u>87aa</u>	Protein coding	-		GENCODE basic ,
Hmga1-215	ENSMUST00000232253.2	600	106aa	Protein coding	-		GENCODE basic ,
Hmga1-212	ENSMUST00000231866.2	584	118aa	Protein coding	ē		GENCODE basic ,
Hmga1-207	ENSMUST00000231243.2	524	118aa	Protein coding			GENCODE basic ,

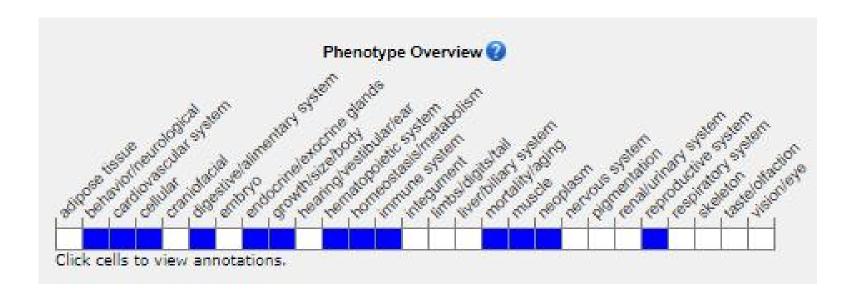

The strategy is based on the design of *Hmga1*-213 transcript, the transcription is shown below:



Source: https://www.ensembl.org


Genomic Information

Source: : https://www.ensembl.org


Protein Information

Source: : https://www.ensembl.org

Mouse Phenotype Information (MGI)

• According to the existing MGI data, although haploinsufficiency at this locus is not compatible with germline transmission of one allele at this locus, mice homozygous for two other disruptions are fertile. Abnormalities are seen in glucose metabolism and in the cardiovascular system.

Source: https://www.informatics.jax.org

Important Information

- According to the existing MGI data, although haploinsufficiency at this locus is not compatible with germline transmission of one allele at this locus, mice homozygous for two other disruptions are fertile. Abnormalities are seen in glucose metabolism and in the cardiovascular system.
- *Hmga1&Hmga1b* express identical proteins, which cannot be distinguished from the protein level.
- The KO region contains functional region of the *Gm49774* gene. Knockout the region may affect the function of *Gm49774* gene.
- *Hmga1* is located on Chr17. If the knockout mice are crossed with other mouse strains to obtain double homozygous mutant offspring, please avoid the situation that the second gene is on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

