

Srrm2 Cas9-KO Strategy

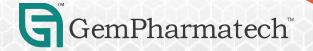
Designer: Yao Yu

Reviewer: Yanhua Shen

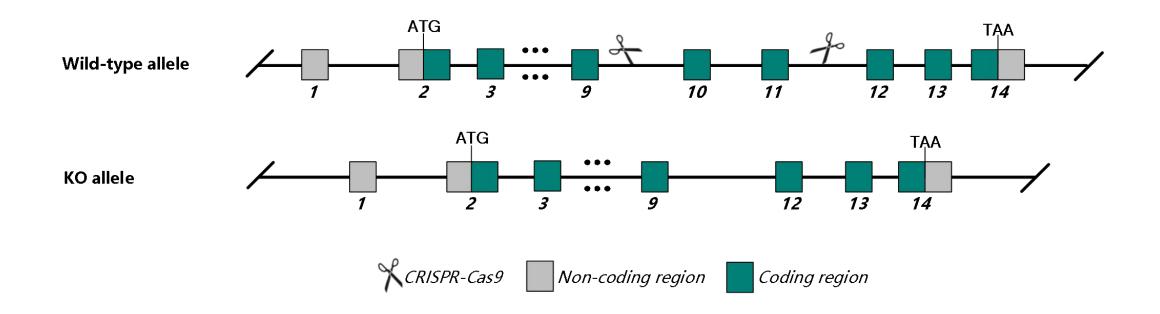
Design Date: 2022-09-27

Overview

Target Gene Name


• Srrm2

Project Type


• Cas9-KO

Genetic Background

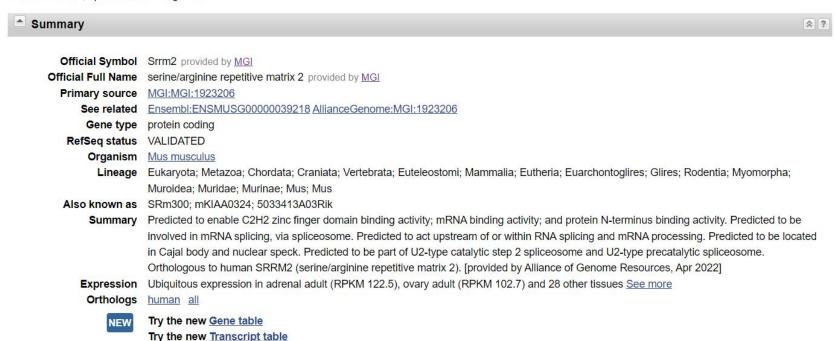
• C57BL/6JGpt

Strain Strategy

Schematic representation of CRISPR-Cas9 engineering used to edit the Srrm2 gene.

Technical Information

- The *Strm2* gene has 12 transcripts. According to the structure of *Strm2* gene, exon 10-exon 11 of *Strm2*-201 (ENSMUST00000088621.11) transcript is recommended as the knockout region. The region contains 6857 bp of coding sequences. Knocking out the region will result in disruption of protein function.
- In this project we use CRISPR-Cas9 technology to modify *Strm2* gene. The brief process is as follows: gRNAs were transcribed in vitro. Cas9 and gRNAs were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and on-target amplicon sequencing. A stable F1-generation mouse strain was obtained by mating positive F0-generation mice with C57BL/6JGpt mice and confirmation of the desired mutant allele was carried out by PCR and on-target amplicon sequencing.




Gene Information

Srrm2 serine/arginine repetitive matrix 2 [Mus musculus (house mouse)]

≛ Download Datasets

Gene ID: 75956, updated on 30-Aug-2022

☆ ?

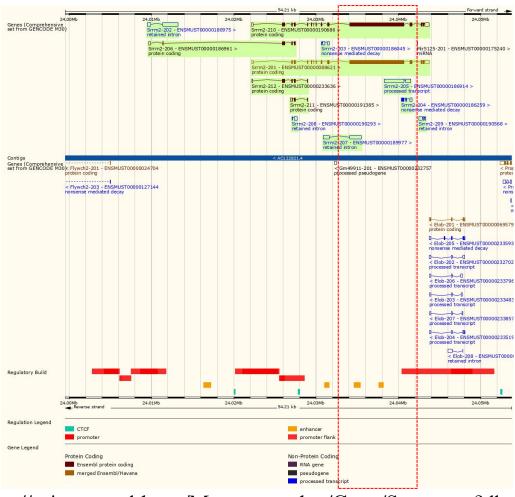
Location: 17: 17 A3.3

See Srrm2 in Genome Data Viewer

Exon count: 20

Source: https://www.ncbi.nlm.nih.gov/gene/75956

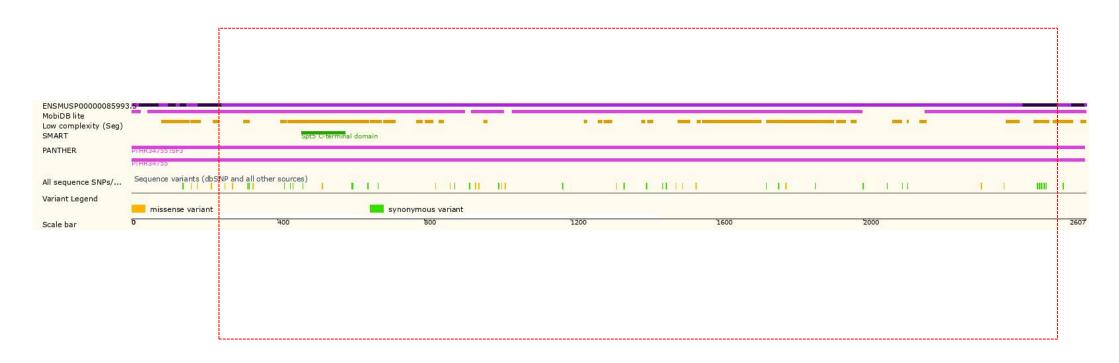
Transcript Information The gene has 12 transcripts, all transcripts are shown below:


Transcript ID 🔻	Name 🍦	bp 🍦	Protein	Biotype	CCDS 🍦	UniProt Match 🍦		Flags			
ENSMUST00000233636.2	Srrm2-212	678	<u>191aa</u>	Protein coding		A0A3B2W3Z4₽	CDS 3' incomplete				
ENSMUST00000191385.3	Srrm2-211	459	88aa	Protein coding		A0A087WPS9₽	TSL:2 CDS 3' incomplete				
ENSMUST00000190686.7	Srrm2-210	8864	2703aa	Protein coding		Q8BTI8-1 ₽	Ensembl Canonical	GENCODE basic	APPRIS P1	TSL:5	
ENSMUST00000190568.2	Srrm2-209	597	No protein	Retained intron		48	TSL:2				
NSMUST00000190293.2	Srrm2-208	431	No protein	Retained intron		49	TSL:3				
ENSMUST00000189977.2	Srrm2-207	2092	No protein	Retained intron		40	TSL:1				
NSMUST00000186961.7	Srrm2-206	950	<u>171aa</u>	Protein coding		A0A087WRX8₽	TSL	TSL:5 CDS 3' incomplete			
NSMUST00000186914.2	Srrm2-205	2991	No protein	Processed transcript		- 63	TSL:1				
NSMUST00000186259.2	Srrm2-204	647	<u>105aa</u>	Nonsense mediated decay		A0A087WR98₺	TSL	SL:3 CDS 5' incomplete			
ENSMUST00000186045.2	Srrm2-203	494	<u>34aa</u>	Nonsense mediated decay		<u>A0A087WPU0</u> ₽	TSL	.:3 CDS 5' incomp	CDS 5' incomplete		
NSMUST00000180975.3	Srrm2-202	2266	No protein	Retained intron		-		TSL:1			
NSMUST00000088621.11	Srrm2-201	8564	2607aa	Protein coding	CCDS37475@	Q8BTI8-2 ₺	GE	NCODE basic TS	L:1		

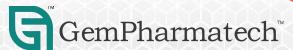
The strategy is based on the design of *Srrm2*-201 transcript, the transcription is shown below:

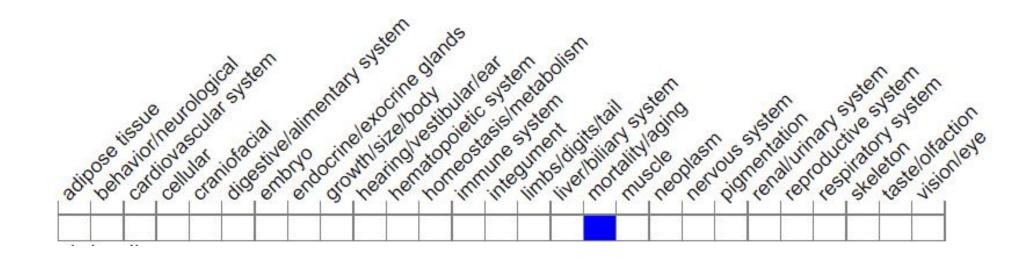
http://asia.ensembl.org/Mus_musculus/Transcript/Summary?db=core;g=ENSMUSG00000039218;r=17:240 09506-24043715;t=ENSMUST00000088621

Genomic Information



http://asia.ensembl.org/Mus_musculus/Gene/Summary?db=core;g=E


NSMUSG00000039218;r=17:24009506-24043715;t=ENSMUST00000088621


Protein Information

http://asia.ensembl.org/Mus_musculus/Transcript/ProteinSummary?db=core;g=ENSMUSG0000003921 8;r=17:24009506-24043715;t=ENSMUST00000088621

Mouse Phenotype Information (MGI)

Source: http://www.informatics.jax.org/marker/MGI:1923206

Important Information

- According to the available information (MGI), there is a certain lethality rate before weaning in mice homozygous for knock-out alleles. http://www.informatics.jax.org/diseasePortal/genoCluster/view/33639
- The sequences encoding transcripts *Srrm2*-203, *Srrm2*-204, *Srrm2*-206, *Srrm2*-211, and *Srrm2*-212 are incomplete and the effect of knocking out the target region on them is unknown.
- The knockdown region designed in this strategy is about 1.6 kp away from the 3' end of the *Elob* gene, and knockdown of the target gene may affect the regulation of the 3' end of the *Elob* gene.
- The effect of this strategy on the uncoded transcript *Gm49911-*201 *Mir5125-*201 is unknown.
- *Srrm2* is located on Chr 17. If the knockout mice are crossed with other mouse strains to obtain double homozygous mutant offspring, please avoid the situation that the second gene is on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risks of the mutation on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

