

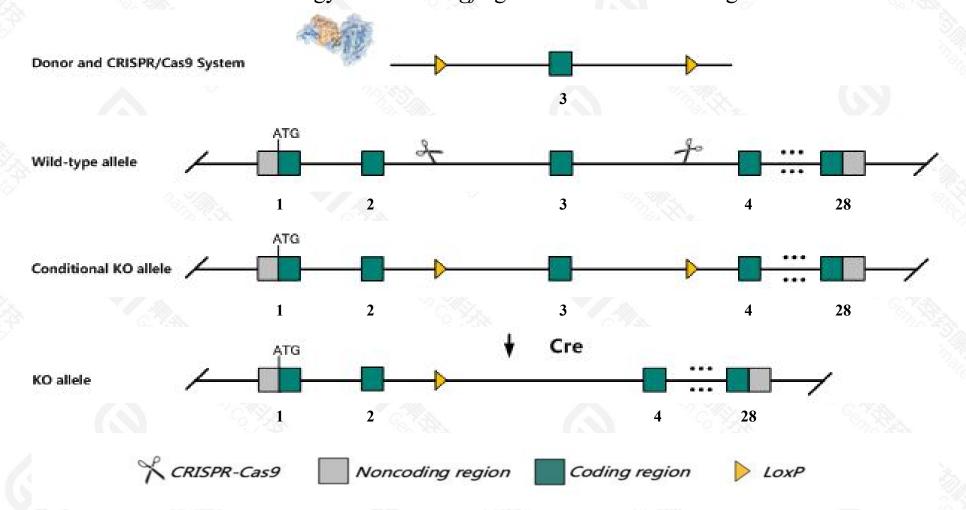
Egfr Cas9-CKO Strategy

Designer: Yang Yang

Reviewer: JingJin

Design Date: 2022-2-17

Project Overview



Project Name	Egfr
Project type	Cas9-CKO
Strain background	C57BL/6JGpt

Conditional Knockout strategy

This model will use CRISPR-Cas9 technology to edit the *Egfr* gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Egfr* gene has 5 transcripts. According to the structure of *Egfr* gene, exon 3 of *Egfr-201*(ENSMUST00000020329.13) transcript is recommended as the knockout region. The region contains 184 bp coding sequence. Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR-Cas9 technology to modify *Egfr* gene. The brief process is as follows: CRISPR-Cas9 system and donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.
- > The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- > According to the existing MGI data, mutations widely affect epithelial development. Null homozygote survival is strain dependent, with defects observed in skin, eye, brain, viscera, palate, tongue and other tisses. Other mutations produce an open eyed, curly whisker phenotype, while a dominant hypermorph yields a thickened epidermis.
- \succ The *Egfr* gene is located on the Chr 11. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Egfr epidermal growth factor receptor [Mus musculus (house mouse)]

Gene ID: 13649, updated on 13-Mar-2020

Summary

☆ ?

Official Symbol Egfr provided by MGI

Official Full Name epidermal growth factor receptor provided by MGI

Primary source MGI:MGI:95294

See related Ensembl:ENSMUSG00000020122

RefSeq status VALIDATED
Organism Mus musculus

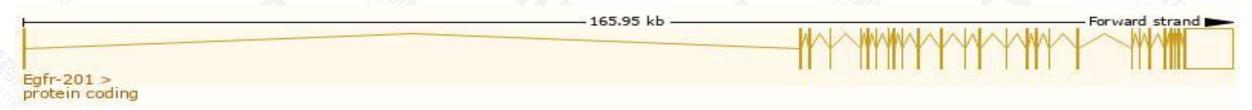
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

Also known as 9030024J15Rik, Al552599, Erbb, Errb1, Errp, Wa5, wa-2, wa2

Expression Broad expression in liver adult (RPKM 26.7), liver E18 (RPKM 8.7) and 15 other tissuesSee more

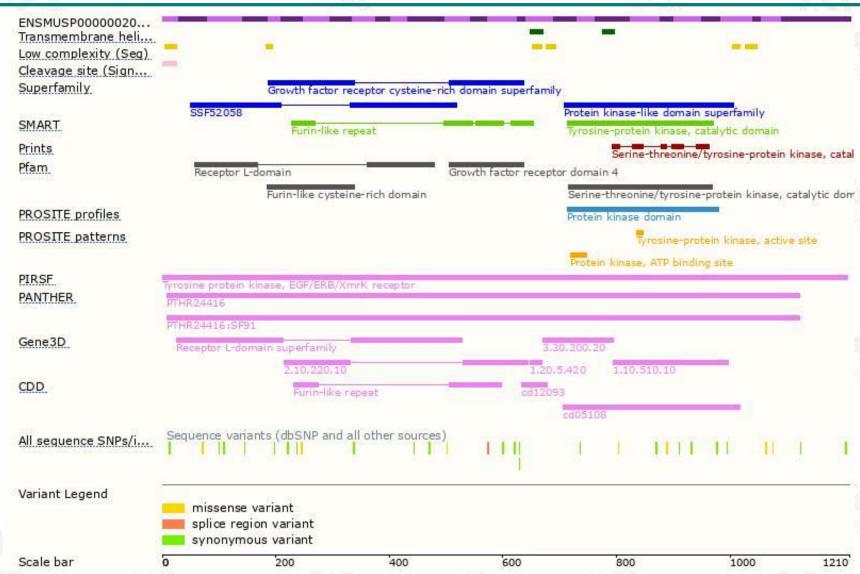
Orthologs <u>human</u> all

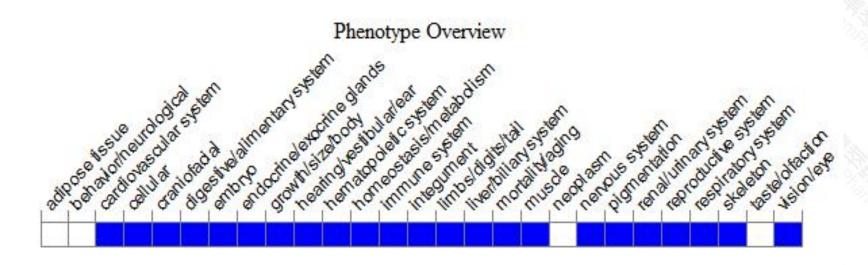

Transcript information (Ensembl)

The gene has 5 transcripts, all transcripts are shown below:

Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Egfr-201	ENSMUST00000020329.12	10208	<u>1210aa</u>	Protein coding	CCDS24443	Q01279	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS P1
Egfr-202	ENSMUST00000102884.9	2943	<u>655aa</u>	Protein coding	CCDS24444	Q9WVF5	TSL:1 GENCODE basic
Egfr-203	ENSMUST00000125984.1	463	136aa	Protein coding	-	Q5SVE7	CDS 5' incomplete TSL:1
Egfr-204	ENSMUST00000138518.1	716	No protein	Processed transcript	100	26	TSL:5
Egfr-205	ENSMUST00000139722.1	446	No protein	Processed transcript		- 1	TSL:5

The strategy is based on the design of *Egfr-201* transcript, the transcription is shown below:


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, mutations widely affect epithelial development. Null homozygote survival is strain dependent, with defects observed in skin, eye, brain, viscera, palate, tongue and other tisses. Other mutations produce an open eyed, curly whisker phenotype, while a dominant hypermorph yields a thickened epidermis.

If you have any questions, you are welcome to inquire.

Tel: 400-9660890

