

Fryl Cas9-KO Strategy

Designer: Daohua Xu

Reviewer: Huimin Su

Design Date: 2020-4-8

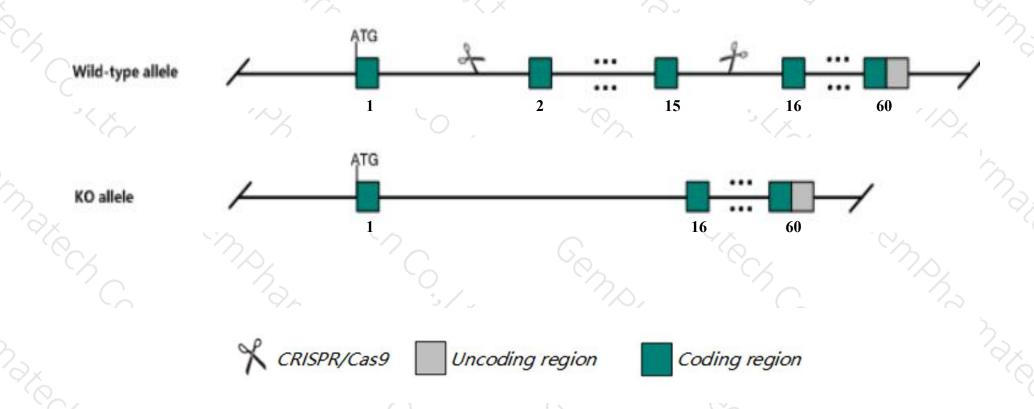
Project Overview

Project Name

Fryl

Project type

Cas9-KO


Strain background

C57BL/6JGpt

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Fryl gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Fryl* gene has 20 transcripts. According to the structure of *Fryl* gene, exon2-exon15 of *Fryl-201*(ENSMUST00000094700.10) transcript is recommended as the knockout region. The region contains 1520bp coding sequence.

 Knock out the region will result in disruption of protein function.
- In this project we use CRISPR/Cas9 technology to modify Fryl gene. The brief process is as follows: CRISPR/Cas9 system were

Notice

- According to the existing MGI data, Most mice homozygous for a knock-out allele exhibit postnatal lethality and defects in kidney development; rare survivors display growth retardation, decreased body weight, and premature death associated with chronic hydronephrosis.
- > Transcript Fryl-212, Fryl-214, Fryl-217, Fryl-219 and Fryl-220 may not be affected.
- > The *Fryl* gene is located on the Chr5. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Fryl FRY like transcription coactivator [Mus musculus (house mouse)]

Gene ID: 72313, updated on 13-Mar-2020

Summary

☆ ?

Official Symbol Fryl provided by MGI

Official Full Name FRY like transcription coactivator provided by MGI

Primary source MGI:MGI:1919563

See related Ensembl: ENSMUSG00000070733

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

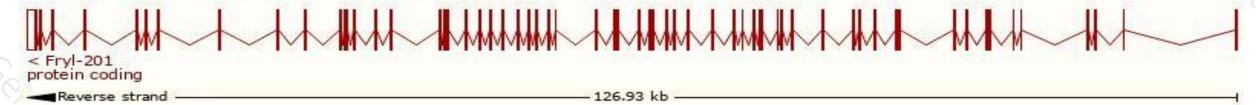
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

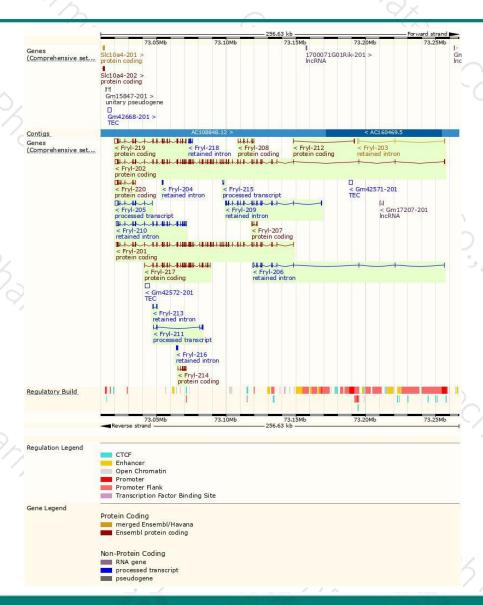
Also known as 2010313D22Rik, 2310004H21Rik, 2510002A14Rik, 9030227G01Rik, mKIAA0826

Expression Ubiquitous expression in thymus adult (RPKM 7.6), colon adult (RPKM 7.0) and 28 other tissuesSee more

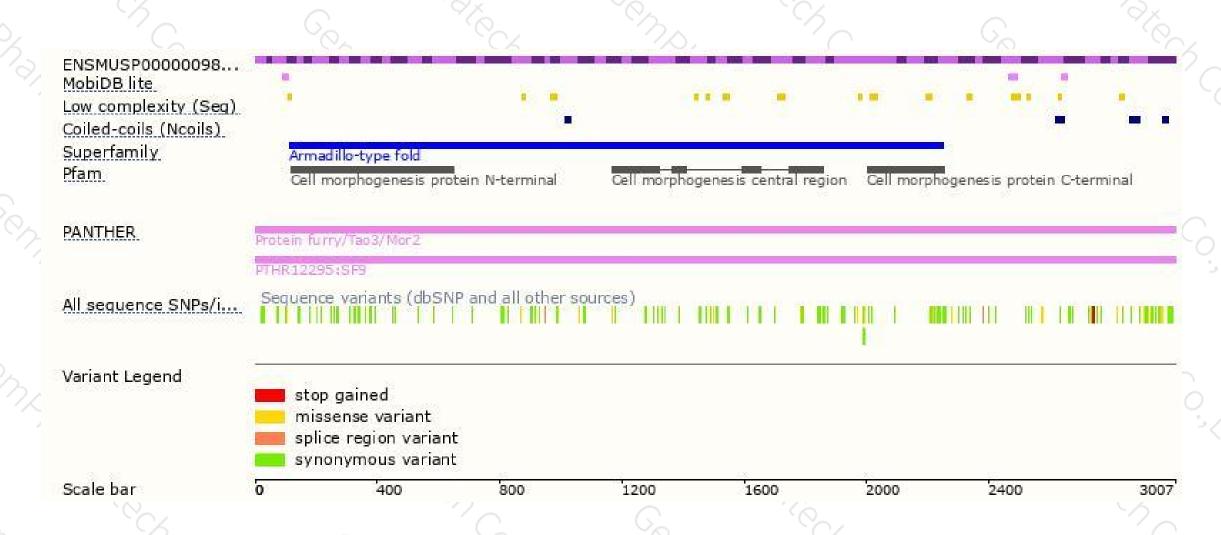
Orthologs <u>human</u> all

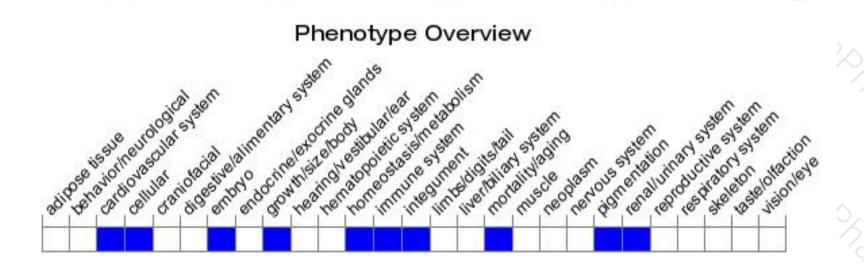

Transcript information (Ensembl)

The gene has 20 transcripts, all transcripts are shown below:


			Sugar				
Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
ryl-202	ENSMUST00000101127.11	11340	3007aa	Protein coding	CCDS19337	F8VQ05	TSL:5 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS
Fryl-201	ENSMUST00000094700.10	9852	3007aa	Protein coding	CCDS19337	F8VQ05	TSL:2 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS
Fryl-219	ENSMUST00000202697.3	5743	1230aa	Protein coding	÷	A0A0J9YTS1	CDS 5' incomplete TSL:5
Fryl-217	ENSMUST00000202381.3	4392	1464aa	Protein coding	-	A0A0J9YUH4	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:5
Fryl-220	ENSMUST00000202806.3	2707	331aa	Protein coding		A0A0J9YU33	CDS 5' incomplete TSL:5
Fryl-214	ENSMUST00000201277.1	723	241aa	Protein coding		A0A0J9YUJ6	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:3
Fryl-208	ENSMUST00000153903.2	600	200aa	Protein coding	-	F6Q1V8	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:5
Fryl-207	ENSMUST00000152631.1	495	<u>124aa</u>	Protein coding	2	F6SDM9	CDS 5' incomplete TSL:3
Fryl-212	ENSMUST00000176910.2	449	<u>129aa</u>	Protein coding	6	H3BLH9	CDS 3' incomplete TSL:3
Fryl-205	ENSMUST00000146953.7	3088	No protein	Processed transcript	-	14.	TSL:1
Fryl-211	ENSMUST00000175890.1	606	No protein	Processed transcript	-	14	TSL:2
Fryl-215	ENSMUST00000201405.1	402	No protein	Processed transcript	-	7.27	TSL:3
Fryl-210	ENSMUST00000156661.8	5056	No protein	Retained intron		-	TSL1
Fryl-209	ENSMUST00000153923.7	3007	No protein	Retained intron	. e	163	TSL:2
Fryl-206	ENSMUST00000148433.7	1899	No protein	Retained intron	- u	(12)	TSL:1
Fryl-203	ENSMUST00000123446.2	1641	No protein	Retained intron	-	1020	TSL2
Fryl-216	ENSMUST00000201841.1	543	No protein	Retained intron		-	TSL:2
Fryl-204	ENSMUST00000143665.2	520	No protein	Retained intron		14.3	TSL1
Fryl-218	ENSMUST00000202413.1	404	No protein	Retained intron	ů.	(4)	TSL3
Fryl-213	ENSMUST00000201200.1	376	No protein	Retained intron	0	198	TSL:3

The strategy is based on the design of Fryl-201 transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Most mice homozygous for a knock-out allele exhibit postnatal lethality and defects in kidney development; rare survivors display growth retardation, decreased body weight, and premature death association with chronic hydronephrosis.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

