

Chd2 Cas9-CKO Strategy

Designer: Huimin Su

Reviewer: Ruiuri Zhang

Design Date: 2020-7-7

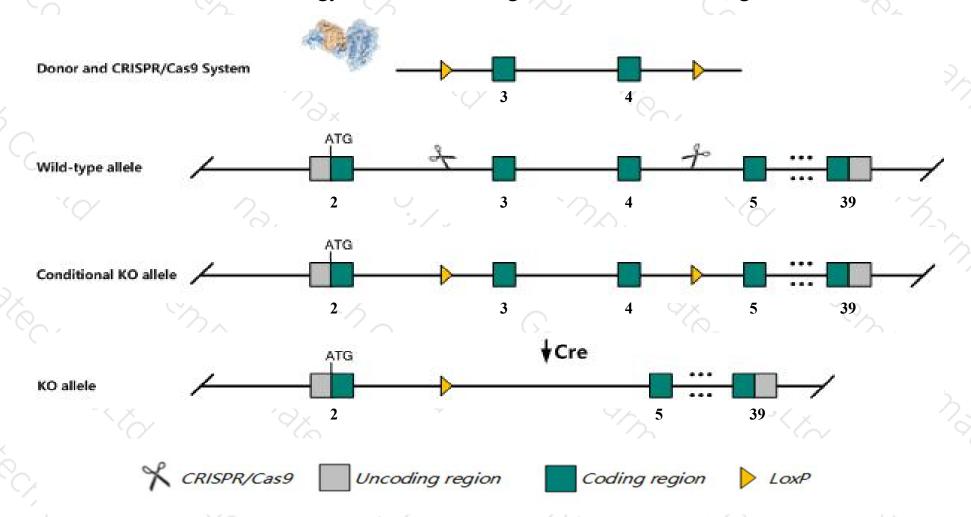
Project Overview

Project Name

Chd2

Project type

Cas9-CKO


Strain background

C57BL/6JGpt

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Chd2 gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Chd2* gene has 18 transcripts. According to the structure of *Chd2* gene, exon3-exon4 of *Chd2*203(ENSMUST00000169922.8) transcript is recommended as the knockout region. The region contains 319bp coding sequence.

 Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Chd2* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.
- > The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- > According to the existing MGI data, mice homozygous for a gene trap allele exhibit early postnatal lethality associated with fetal growth retardation. Mice heterozygous for a gene trap allele exhibit postnatal lethality and premature death after weaning associated with growth retardation and multi-organ defects.
- > The *Chd2* gene is located on the Chr7. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Chd2 chromodomain helicase DNA binding protein 2 [Mus musculus (house mouse)]

Gene ID: 244059, updated on 26-Jun-2020

Summary

☆ ?

Official Symbol Chd2 provided by MGI

Official Full Name chromodomain helicase DNA binding protein 2 provided by MGI

Primary source MGI:MGI:2448567

See related Ensembl: ENSMUSG00000078671

Gene type protein coding
RefSeq status VALIDATED
Organism <u>Mus musculus</u>

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae;

Mus: Mus

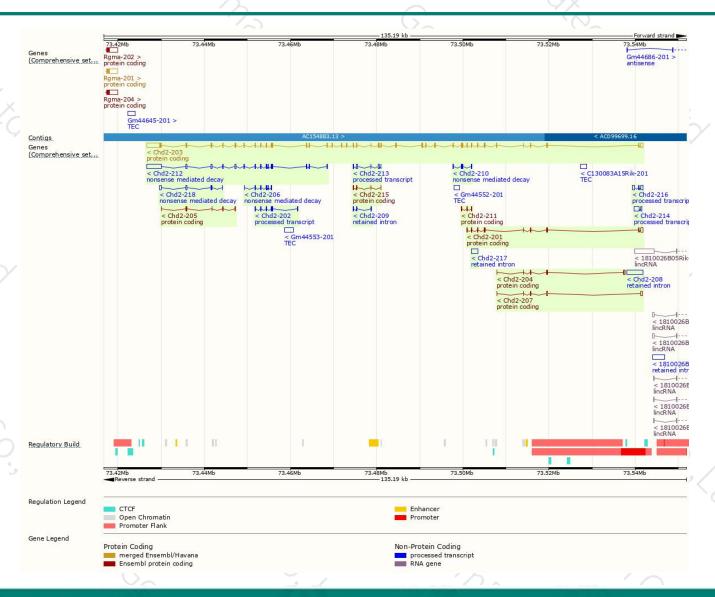
Also known as CHD-2; Al851092; BC029703; 2810013C04Rik; 2810040A01Rik; 5630401D06Rik

Expression Ubiquitous expression in CNS E11.5 (RPKM 9.7), limb E14.5 (RPKM 9.5) and 28 other tissues See more

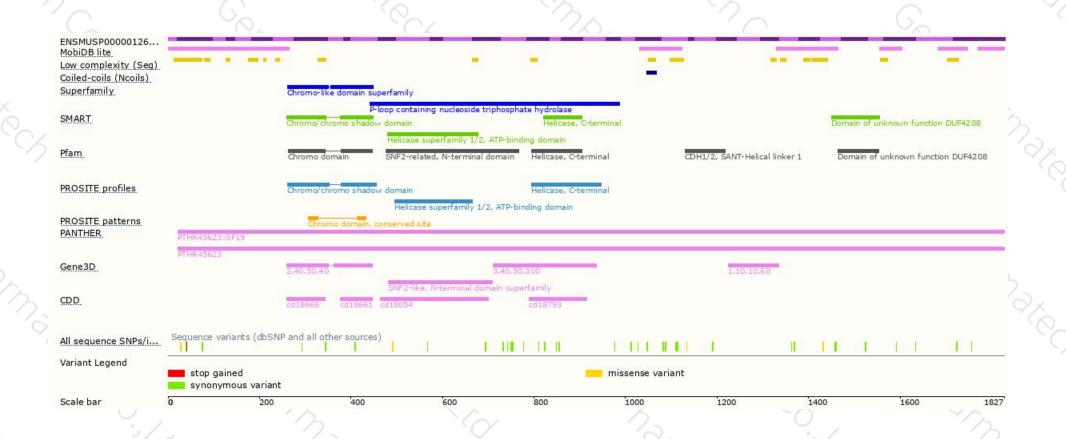
Orthologs human all

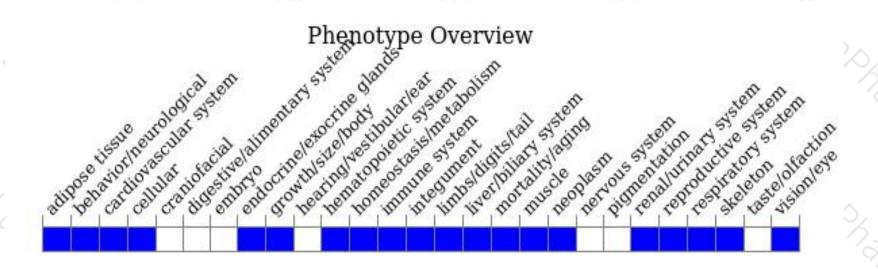
Transcript information (Ensembl)

The gene has 18 transcripts, all transcripts are shown below:


Name	Transcript ID	bp 🛊	Protein A	Biotype	CCDS .	UniProt	Flags	
Chd2-218	ENSMUST00000208458.1	745	<u>34aa</u>	Nonsense mediated decay	-	A0A140LJE4&	CDS 5' incomplete TSL:5	
Chd2-206	ENSMUST00000181971.5	667	<u>35aa</u>	Nonsense mediated decay	-	M0QWT0&	CDS 5' incomplete TSL:5	
Chd2-207	ENSMUST00000197642.1	896	<u>57aa</u>	Protein coding	4	A0A0G2JDK8₽	CDS 3' incomplete TSL:5	
Chd2-210	ENSMUST00000199601.1	558	<u>74aa</u>	Nonsense mediated decay	12	A0A0G2JFK1&	CDS 5' incomplete TSL:5	
Chd2-215	ENSMUST00000200423.1	339	<u>113aa</u>	Protein coding	2	A0A0G2JES5®	CDS 5' and 3' incomplete TSL:5	
Chd2-211	ENSMUST00000199641.1	360	<u>120aa</u>	Protein coding	57	A0A0G2JEP1₢	CDS 5' and 3' incomplete TSL:5	
Chd2-205	ENSMUST00000173785.1	487	<u>163aa</u>	Protein coding	1=	G3UXJ4₺	CDS 5' and 3' incomplete TSL:5	
Chd2-204	ENSMUST00000172704.5	748	<u>178aa</u>	Protein coding	-	G3UZG2₽	CDS 3' incomplete TSL:5	
Chd2-212	ENSMUST00000199809.4	5289	220aa	Nonsense mediated decay	:-	A0A0G2JEZ3 ₺	CDS 5' incomplete TSL:5	
Chd2-201	ENSMUST00000026895.13	1571	<u>333aa</u>	Protein coding	-	F7CDZ7₽	CDS 3' incomplete TSL:5	
Chd2-203	ENSMUST00000169922.8	9085	1827aa	Protein coding	CCDS52274₺	E9PZM4₽	TSL:5 GENCODE basic APPRIS P	
Chd2-214	ENSMUST00000200218.1	1387	No protein	Processed transcript	12	1-1	TSL:1	
Chd2-216	ENSMUST00000200492.1	1196	No protein	Processed transcript	2		TSL:5	
Chd2-202	ENSMUST00000038366.8	755	No protein	Processed transcript	2	-	TSL:1	
Chd2-213	ENSMUST00000199831.1	582	No protein	Processed transcript	1=	-	TSL:5	
Chd2-208	ENSMUST00000197800.1	3741	No protein	Retained intron		-	TSL:NA	
Chd2-217	ENSMUST00000206665.1	1632	No protein	Retained intron	-	(1-0)	TSL:NA	
Chd2-209	ENSMUST00000198225.1	392	No protein	Retained intron	-	(-)	TSL:3	

The strategy is based on the design of *Chd2-203* transcript, the transcription is shown below:


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data,mice homozygous for a gene trap allele exhibit early postnatal lethality associated with fetal growth retardation. Mice heterozygous for a gene trap allele exhibit postnatal lethality and premature death after weaning associated with growth retardation and multi-organ defects.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

