

B3galnt2 Cas9-KO Strategy

Designer: Yanhua Shen

Reviewer: Xueting Zhang

Design Date: 2020-4-15

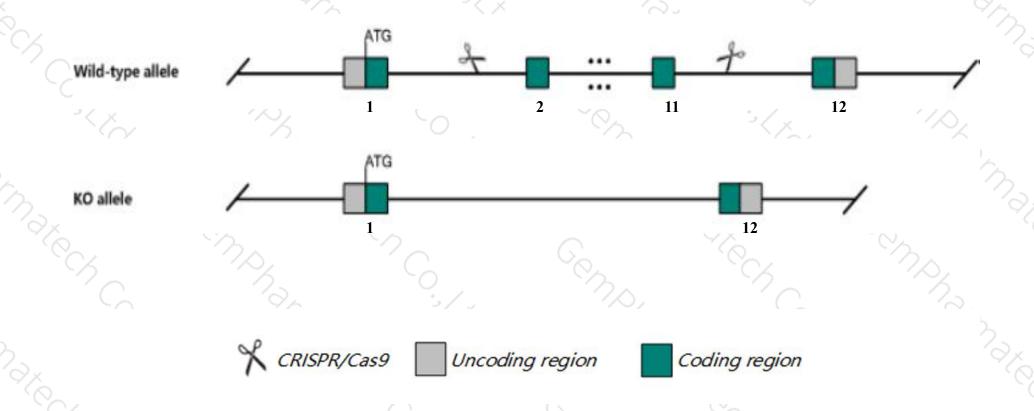
Project Overview

Project Name

B3galnt2

Project type

Cas9-KO


Strain background

C57BL/6JGpt

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *B3galnt2* gene. The schematic diagram is as follows:

Technical routes

- The *B3galnt2* gene has 12 transcripts. According to the structure of *B3galnt2* gene, exon2-exon11 of *B3galnt2-201* (ENSMUST00000099747.4) transcript is recommended as the knockout region. The region contains 1259bp coding sequence Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *B3galnt2* gene. The brief process is as follows: CRISPR/Cas9 syst

Notice

- ➤ The effect of transcripts 202,205,209 is unknown.
- > *Gm18856* gene may be destroyed.
- The *B3galnt2* gene is located on the Chr13. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

B3gaInt2 UDP-GaINAc:betaGlcNAc beta 1,3-galactosaminyItransferase, polypeptide 2 [Mus musculus (house mouse)]

Gene ID: 97884, updated on 13-Mar-2020

Summary

Official Symbol B3gaInt2 provided by MGI

Official Full Name UDP-GalNAc:betaGlcNAc beta 1,3-galactosaminyltransferase, polypeptide 2 provided byMGI

Primary source MGI:MGI:2145517

See related Ensembl:ENSMUSG00000039242

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

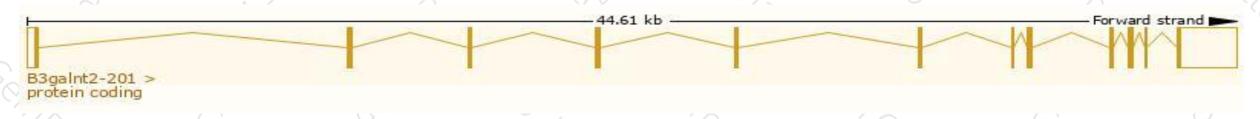
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

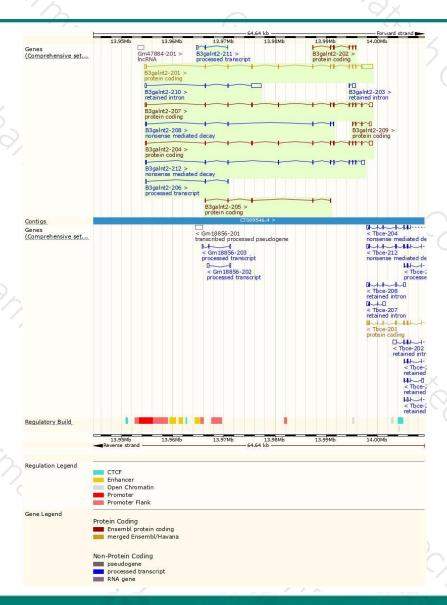
Also known as A930105D20Rik, C80633, D230016N13Rik

Expression Ubiquitous expression in bladder adult (RPKM 13.6), CNS E11.5 (RPKM 13.0) and 28 other tissues See more

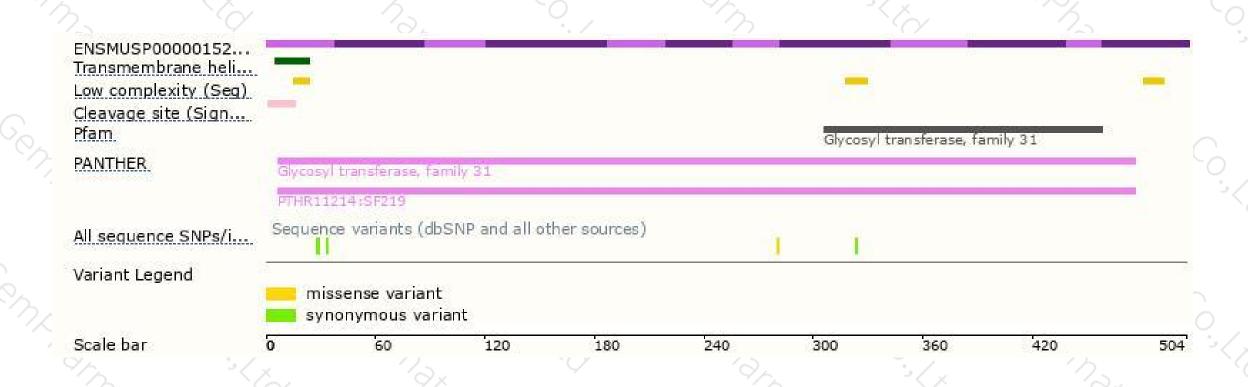
Orthologs <u>human</u> all

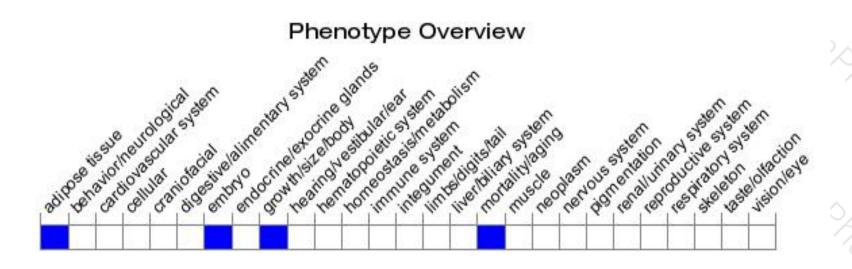

Transcript information (Ensembl)

The gene has 12 transcripts, all transcripts are shown below:


1 1		Buch					
Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
B3gaInt2-201	ENSMUST00000099747.4	3892	504aa	Protein coding	CCDS26246	Q8BG28	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS P1
B3gaInt2-207	ENSMUST00000221974.1	2439	504aa	Protein coding	CCDS26246	Q8BG28	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS P1
B3gaint2-204	ENSMUST00000221300.1	2397	504aa	Protein coding	CCDS26246	Q8BG28	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS P1
B3gaInt2-202	ENSMUST00000220681.1	767	251aa	Protein coding	20	A0A1Y7VLK8	CDS 5' incomplete TSL:3
B3gaint2-209	ENSMUST00000222420.1	693	<u>124aa</u>	Protein coding	-	A0A1Y7VK56	CDS 5' incomplete TSL:3
B3gaInt2-205	ENSMUST00000221333.1	602	201aa	Protein coding	8	A0A1Y7VLV9	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:5
B3gaInt2-212	ENSMUST00000223483.1	1876	143aa	Nonsense mediated decay	-	A0A1Y7VJJ6	TSL:1
B3gaInt2-208	ENSMUST00000222110.1	795	<u>123aa</u>	Nonsense mediated decay	20	A0A1Y7VLZ2	TSL:5
B3gaInt2-206	ENSMUST00000221764.1	435	No protein	Processed transcript	-	-	TSL:3
B3gaInt2-211	ENSMUST00000223389.1	434	No protein	Processed transcript	-8	-	TSL:5
B3gaInt2-210	ENSMUST00000223307.1	2400	No protein	Retained intron	2	12	TSL:1
B3gaInt2-203	ENSMUST00000220932.1	751	No protein	Retained intron			TSL:2
		-					

The strategy is based on the design of B3galnt2-201 transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

If you have any questions, you are welcome to inquire. Tel: 400-9660890

