

Inpp4a Cas9-CKO Strategy

Designer: Yanhua Shen

Reviewer: Xueting Zhang

Design Date: 2020-4-27

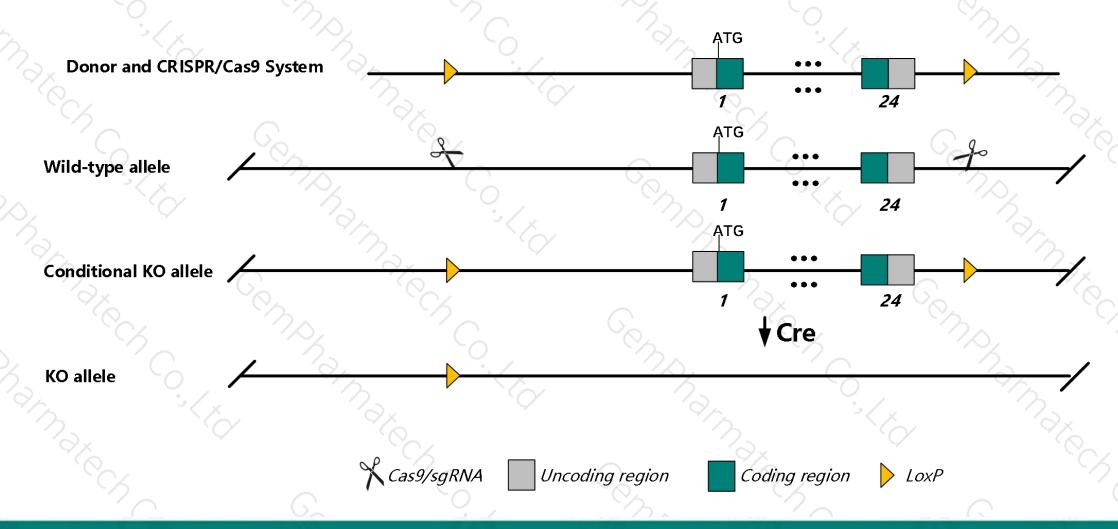
Project Overview

Project Name

Inpp4a

Project type

Cas9-CKO


Strain background

C57BL/6JGpt

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Inpp4a* gene. The schematic diagram is as follows:

Technical routes

- The *Inpp4a* gene has 13 transcripts. According to the structure of *Inpp4a* gene, exon1-exon24 of *Inpp4a-208* (ENSMUST00000137266.7) transcript is recommended as the knockout region. The region contains all of coding sequence. Knock out the region will result in disruption of protein function.
- In this project we use CRISPR/Cas9 technology to modify *Inpp4a* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.
- The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- > According to the existing MGI data, homozygotes for a spontaneous mutation exhibit small size, ataxia, loss of cerebellar and hippocampal CA1 neurons, and death by 24 days of age from seizures and/or malnutrition.
- > Transcripts 210,212 may not be affected.
- The *Inpp4a* gene is located on the Chr1. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Inpp4a inositol polyphosphate-4-phosphatase, type I [Mus musculus (house mouse)]

Gene ID: 269180, updated on 13-Mar-2020

Summary

☆ ?

Official Symbol Inpp4a provided by MGI

Official Full Name inositol polyphosphate-4-phosphatase, type I provided by MGI

Primary source MGI:MGI:1931123

See related Ensembl: ENSMUSG00000026113

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;

Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus

Also known as 107kDa; R74740; 9630012D15; D130048C09Rik

Expression Ubiquitous expression in cerebellum adult (RPKM 12.1), frontal lobe adult (RPKM 10.4) and 26 other tissues See more

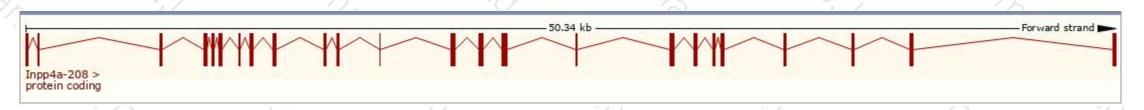
Orthologs human all

Genomic context

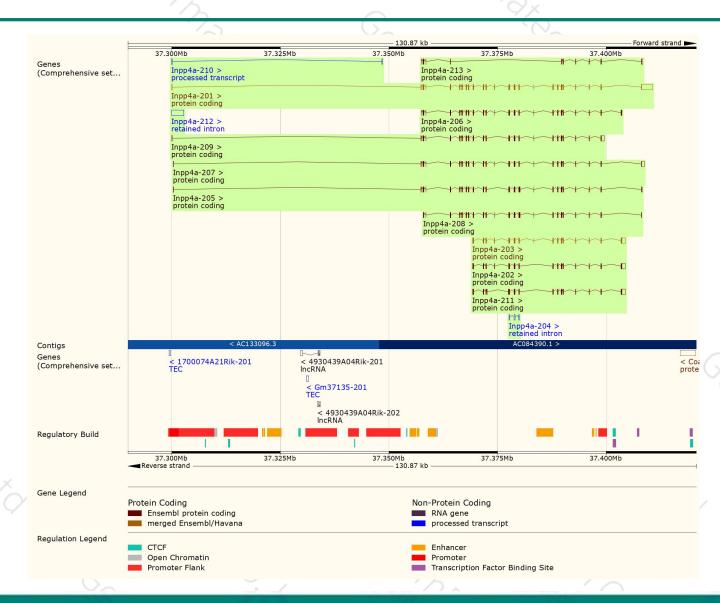
Location: 1 B; 1 15.46 cM

See Inpp4a in Genome Data Viewer

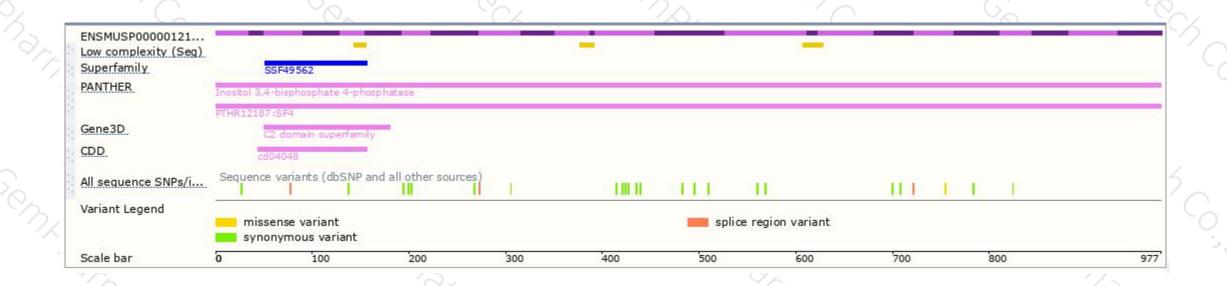
Exon count: 27

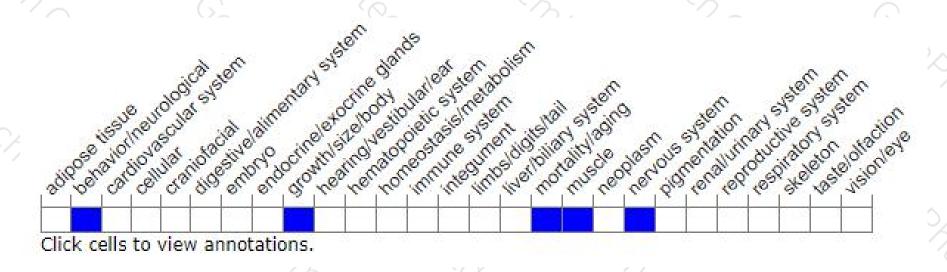

Transcript information (Ensembl)

The gene has 13 transcripts, all transcripts are shown below:


Name 🍦	Transcript ID 👙	bp 🛊	Protein 🍦	Biotype	CCDS .	UniProt 🍦	Flags
Inpp4a-201	ENSMUST00000027287.10	5691	<u>939aa</u>	Protein coding	CCDS35539₽	F6V2U0₽	TSL:5 GENCODE basic APPRIS P3
Inpp4a-203	ENSMUST00000114933.8	3004	690aa	Protein coding	CCDS35540₽	E9QAD0₽	TSL:1 GENCODE basic
Inpp4a-202	ENSMUST00000058307.14	2963	<u>679aa</u>	Protein coding	CCDS78570₽	<u>A0A0R4J0Q2</u> ₽	TSL:1 GENCODE basic
Inpp4a-208	ENSMUST00000137266.7	2934	<u>977aa</u>	Protein coding	CCDS69879₽	<u>D3Z230</u> ₽	TSL:5 GENCODE basic APPRIS ALT2
Inpp4a-209	ENSMUST00000140264.7	3676	890aa	Protein coding	-	Q3UEQ1₽	TSL:1 GENCODE basic
Inpp4a-207	ENSMUST00000136846.7	3576	<u>938aa</u>	Protein coding	+	E9Q9A0₽	TSL:5 GENCODE basic APPRIS ALT1
Inpp4a-205	ENSMUST00000132401.7	3234	<u>972aa</u>	Protein coding	*	D3YUL8₽	TSL:5 GENCODE basic APPRIS ALT2
Inpp4a-206	ENSMUST00000132615.7	3038	<u>954aa</u>	Protein coding	*	D3YUD3₽	TSL:5 GENCODE basic APPRIS ALT1
Inpp4a-211	ENSMUST00000168546.2	2964	<u>679aa</u>	Protein coding	-	F6R4N2Ø	TSL:5 GENCODE basic
Inpp4a-213	ENSMUST00000193774.5	1243	306aa	Protein coding	-	A0A0A6YXS5₽	TSL:5 GENCODE basic
Inpp4a-210	ENSMUST00000146676.1	369	No protein	Processed transcript	-	-	TSL:3
Inpp4a-212	ENSMUST00000193024.1	2874	No protein	Retained intron	-	-	TSL:NA
Inpp4a-204	ENSMUST00000123124.1	463	No protein	Retained intron	-	-	TSL:5

The strategy is based on the design of *Inpp4a-208* transcript, the transcription is shown below:


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, homozygotes for a spontaneous mutation exhibit small size, ataxia, loss of cerebellar and hippocampal CA1 neurons, and death by 24 days of age from seizures and/or malnutrition.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

