

Cars2 Cas9-CKO Strategy

Designer: Yanhua Shen

Reviewer: Xueting Zhang

Design Date: 2020-5-7

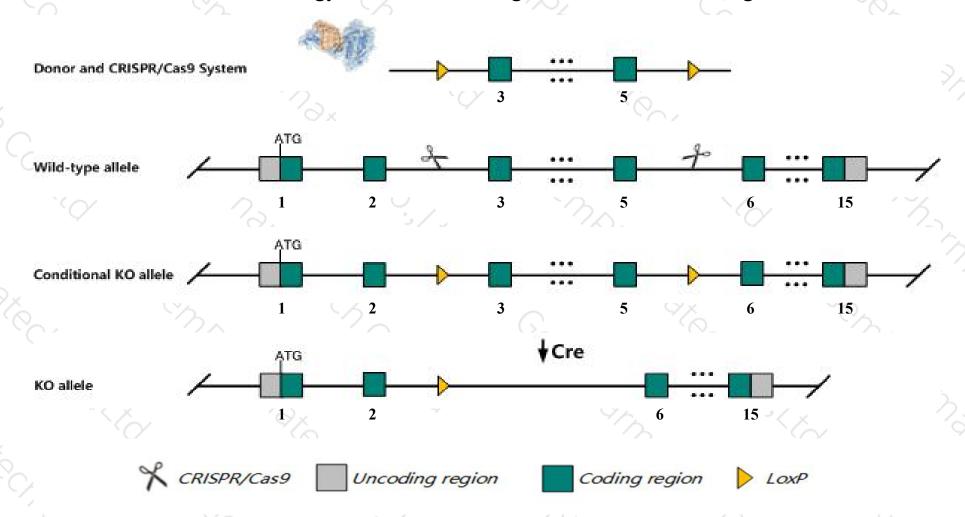
Project Overview

Project Name

Cars2

Project type

Cas9-CKO


Strain background

C57BL/6JGpt

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Cars2 gene. The schematic diagram is as follows:

Technical routes

- ➤ The Cars2 gene has 12 transcripts. According to the structure of Cars2 gene, exon3-exon5 of Cars2-201 (ENSMUST00000049461.6) transcript is recommended as the knockout region. The region contains 296bp coding sequence. Knock out the region will result in disruption of protein function.
- In this project we use CRISPR/Cas9 technology to modify *Cars2* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.
- The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- > According to the existing MGI data, mice homozygous for an enu-induced allele develop induced hyperactivity followed by head bobbing and tremors.
- > Transcript 209 may not be affected. The effect of transcript 210 is unknown.
- > Transcript 212 may be destroyed.
- > The Cars2 gene is located on the Chr8. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Cars2 cysteinyl-tRNA synthetase 2 (mitochondrial)(putative) [Mus musculus (house mouse)]

Gene ID: 71941, updated on 20-Mar-2020

Summary

☆ ?

Official Symbol Cars2 provided by MGI

Official Full Name cysteinyl-tRNA synthetase 2 (mitochondrial)(putative) provided by MGI

Primary source MGI:MGI:1919191

See related Ensembl: ENSMUSG00000056228

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

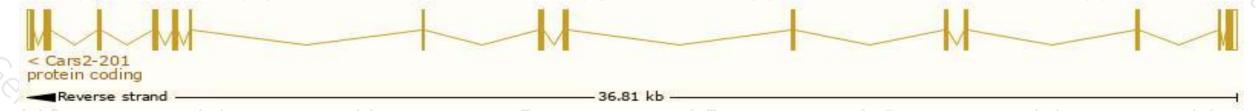
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

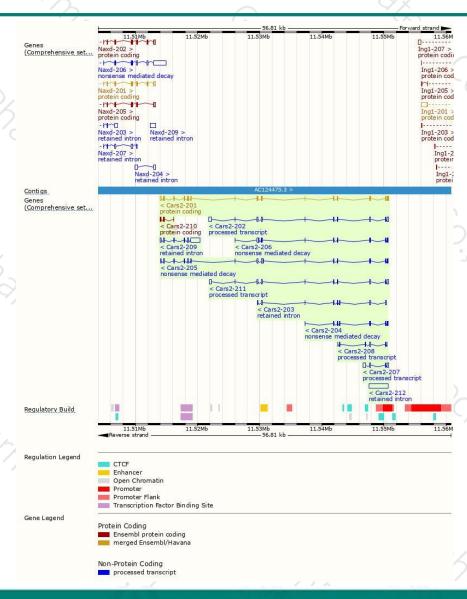
Also known as 2310051N18Rik, 2410044A07Rik, D530030H10Rik, cysRS

Expression Ubiquitous expression in adrenal adult (RPKM 22.7), ovary adult (RPKM 18.5) and 28 other tissuesSee more

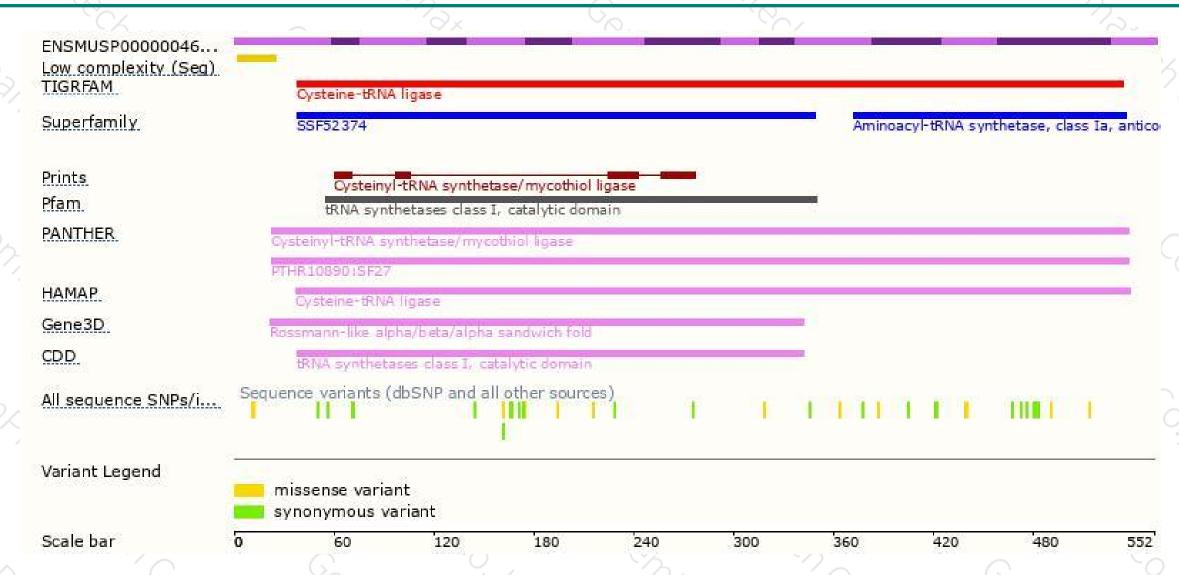
Orthologs <u>human</u> all

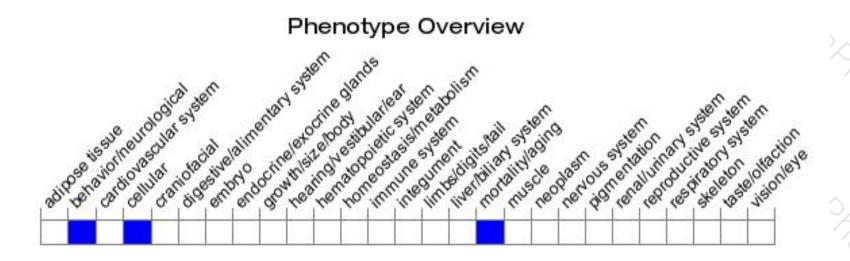

Transcript information (Ensembl)

The gene has 12 transcripts, all transcripts are shown below:


Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Cars2-201	ENSMUST00000049461.6	1902	552aa	Protein coding	CCDS52478	G3X975	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS F
Cars2-210	ENSMUST00000211395.1	424	<u>128aa</u>	Protein coding	686	A0A1B0GSP2	CDS 5' incomplete TSL:5
Cars2-205	ENSMUST00000210478.1	2007	226aa	Nonsense mediated decay	1940	A0A1B0GSW7	TSL:1
Cars2-206	ENSMUST00000210599.1	1107	270aa	Nonsense mediated decay	3.00	A0A1B0GR87	TSL:1
Cars2-204	ENSMUST00000209676.1	704	<u>135aa</u>	Nonsense mediated decay	173	A0A1B0GRF1	TSL:3
Cars2-202	ENSMUST00000209218.1	1375	No protein	Processed transcript	687	- 1	TSL:1
Cars2-211	ENSMUST00000211406.1	1352	No protein	Processed transcript	150	-	TSL:1
Cars2-207	ENSMUST00000210845.1	826	No protein	Processed transcript	343	92	TSL:1
Cars2-208	ENSMUST00000211161.1	354	No protein	Processed transcript	1733	7	TSL:5
Cars2-212	ENSMUST00000211734.1	3135	No protein	Retained intron	688	-	TSL:NA
Cars2-209	ENSMUST00000211172.1	2212	No protein	Retained intron	1940		TSL:5
Cars2-203	ENSMUST00000209236.1	821	No protein	Retained intron	343	70	TSL:3

The strategy is based on the design of *Cars2-201* transcript, the transcription is shown below:


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, mice homozygous for an ENU-induced allele develop induced hyperactivity followed by head bobbing and tremors.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

