Hoxd3 Cas9-CKO Strategy Designer: Huimin Su Reviewer: Ruiuri Zhang Design Date: 2020-5-7 # **Project Overview** **Project Name** Hoxd3 **Project type** Cas9-CKO Strain background C57BL/6JGpt ## Conditional Knockout strategy This model will use CRISPR/Cas9 technology to edit the *Hoxd3* gene. The schematic diagram is as follows: ### Technical routes - The *Hoxd3* gene has 6 transcripts. According to the structure of *Hoxd3* gene, exon2 of *Hoxd3-203* (ENSMUST00000111983.8) transcript is recommended as the knockout region. The region contains start codon ATG. Knock out the region will result in disruption of protein function. - In this project we use CRISPR/Cas9 technology to modify *Hoxd3* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice. - The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types. ### **Notice** - According to the existing MGI data, mice homozygous for a knock-out allele show partial postnatal lethality, asymmetric rib-sternum attachment, and anterior transformations of the cervical vertebrae i (atlas) and ii (axis). mice homozygous for a different knock-out allele lack the anteriorarch of the atlas and the dens of the axis. - \rightarrow The knockout region contains exon3 of Gm28230, and the effect on Gm28230 is unknown. - > Hoxd3-204 transcript may not be affect. - The *Hoxd3* gene is located on the Chr2. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome. - > This strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level. ### Gene information (NCBI) #### Hoxd3 homeobox D3 [Mus musculus (house mouse)] Gene ID: 15434, updated on 13-Mar-2020 #### Summary ☆ ? Official Symbol Hoxd3 provided by MGI Official Full Name homeobox D3 provided by MGI Primary source MGI:MGI:96207 See related Ensembl: ENSMUSG00000079277 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Hox-4.1; Hox-5.5 Expression Biased expression in ovary adult (RPKM 19.8), genital fat pad adult (RPKM 17.5) and 11 other tissues See more Orthologs human all # Transcript information (Ensembl) The gene has 6 transcripts, all transcripts are shown below: | Name 👙 | Transcript ID | bp 🛊 | Protein 🍦 | Biotype 🍦 | CCDS | UniProt - | Flags | |-----------|----------------------|------|--------------|-----------------|------------|-------------------|-------------------------------| | Hoxd3-203 | ENSMUST00000111983.8 | 2968 | <u>433aa</u> | Protein coding | CCDS38149₽ | P09027 ₽ Q3UZR4₽ | TSL:1 GENCODE basic APPRIS P1 | | Hoxd3-202 | ENSMUST00000111982.7 | 2413 | <u>433aa</u> | Protein coding | CCDS38149@ | P09027 ₺ Q3UZR4₺ | TSL:1 GENCODE basic APPRIS P1 | | Hoxd3-201 | ENSMUST00000047830.7 | 2292 | <u>433aa</u> | Protein coding | CCDS38149₽ | P09027 & Q3UZR4 & | TSL:5 GENCODE basic APPRIS P1 | | Hoxd3-204 | ENSMUST00000140666.1 | 822 | <u>113aa</u> | Protein coding | 12 | G3UZS5個 | CDS 3' incomplete TSL:3 | | Hoxd3-205 | ENSMUST00000144544.2 | 415 | <u>67aa</u> | Protein coding | 22 | G3UZU1個 | CDS 3' incomplete TSL:3 | | Hoxd3-206 | ENSMUST00000190553.1 | 2721 | No protein | Retained intron | 15 | 150 | TSL:NA | The strategy is based on the design of *Hoxd3-203* transcript, the transcription is shown below ### Genomic location distribution ### Protein domain # Mouse phenotype description(MGI) Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/). According to the existing MGI data, mice homozygous for a knock-out allele show partial postnatal lethality, asymmetric rib-sternum attachment, and anterior transformations of the cervical vertebrae I (atlas) and II (axis). Mice homozygous for a different knock-out allele lack the anteriorarch of the atlas and the dens of the axis. If you have any questions, you are welcome to inquire. Tel: 400-9660890