

Xrcc6 Cas9-KO Strategy

Designer: Daohua Xu

Reviewer: Huimin Su

Design Date: 2019-11-22

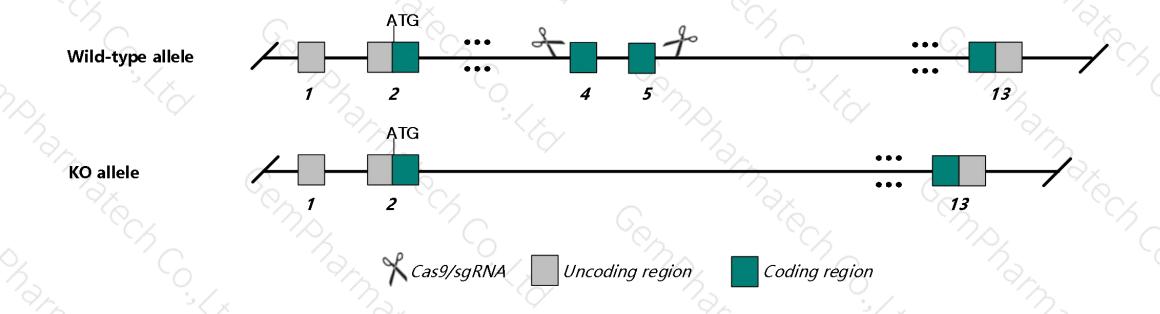
Project Overview

Project Name

Xrcc6

Project type

Cas9-KO


Strain background

C57BL/6JGpt

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Xrcc6 gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Xrcc6* gene has 12 transcripts. According to the structure of *Xrcc6* gene, exon4-exon5 of *Xrcc6-201* (ENSMUST00000069530.12) transcript is recommended as the knockout region. The region contains 394bp coding sequence. Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Xrcc6* gene. The brief process is as follows:CRISPR/Cas9 system transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.

Notice

- ➤ According to the existing MGI data, Mice homozygous for a knock-out allele exhibit neuron apoptosis, decreased body size, abnormal B and T cell morphology, increased incidence of tumorigenesis, and increased cellular sensitivity to irradiation.
- > The *Xrcc6* gene is located on the Chr15. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Xrcc6 X-ray repair complementing defective repair in Chinese hamster cells 6 [Mus musculus (house mouse)]

Gene ID: 14375, updated on 7-Apr-2019

Summary

☆ ?

Official Symbol Xrcc6 provided by MGI

Official Full Name X-ray repair complementing defective repair in Chinese hamster cells 6 provided by MGI

Primary source MGI:MGI:95606

See related Ensembl: ENSMUSG00000022471

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

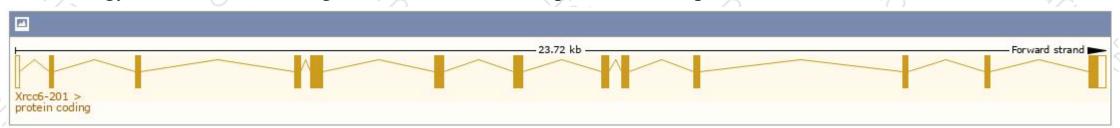
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

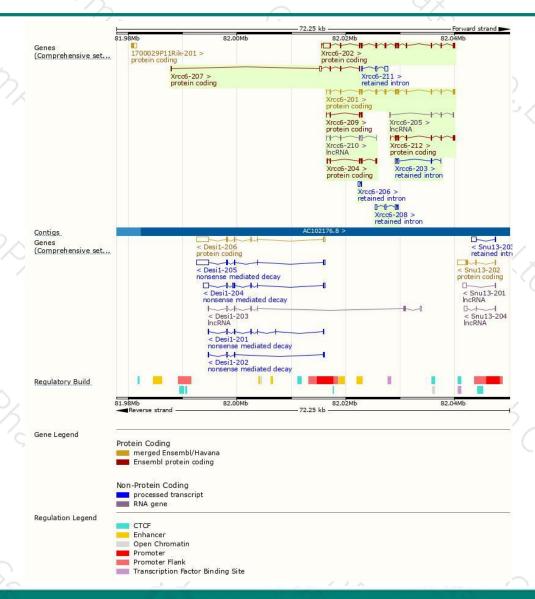
Also known as 70kDa, G22p1, Ku70

Expression Ubiquitous expression in thymus adult (RPKM 14.8), liver E14 (RPKM 4.4) and 23 other tissuesSee more

Orthologs <u>human</u> all

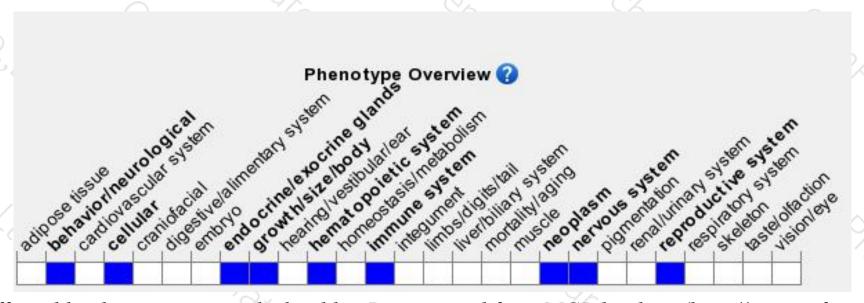

Transcript information (Ensembl)

The gene has 12 transcripts, all transcripts are shown below:


Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Xrcc6-202	ENSMUST00000100399.10	3296	608aa	Protein coding	CCDS37153	A0A0R4J187	TSL:1 GENCODE basic APPRIS P1
Xrcc6-201	ENSMUST00000069530.12	2114	608aa	Protein coding	CCDS37153	A0A0R4J187	TSL:1 GENCODE basic APPRIS P1
Xrcc6-212	ENSMUST00000230729.1	1062	263aa	Protein coding	29	A0A2R8VHZ9	GENCODE basic
Xrcc6-204	ENSMUST00000164779.1	809	<u>97aa</u>	Protein coding	29	E9PZD4	CDS 3' incomplete TSL:3
Xrcc6-207	ENSMUST00000165777.7	797	<u>106aa</u>	Protein coding	- Bi	E9Q163	CDS 3' incomplete TSL:5
Xrcc6-209	ENSMUST00000168581.7	471	<u>27aa</u>	Protein coding	. . 8	E9Q4A4	CDS 3' incomplete TSL:5
Xrcc6-211	ENSMUST00000170907.1	802	No protein	Retained intron	2 g	-	TSL:2
Xrcc6-208	ENSMUST00000166311.1	686	No protein	Retained intron	20	-	TSL:3
Xrcc6-203	ENSMUST00000164775.1	529	No protein	Retained intron	8		TSL:3
Xrcc6-206	ENSMUST00000164975.1	425	No protein	Retained intron	- 8		TSL:3
Xrcc6-210	ENSMUST00000170630.1	677	No protein	IncRNA	29	2	TSL:5
Xrcc6-205	ENSMUST00000164920.7	387	No protein	IncRNA	29	2	TSL:3

The strategy is based on the design of *Xrcc6-201* transcript, The transcription is shown below

Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Mice homozygous for a knock-out allele exhibit neuron apoptosis, decreased body size, abnormal B and T cell morphology, increased incidence of tumorigenesis, and increased cellular sensitivity to irradiation.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

