

Ank2 Cas9-CKO Strategy

Designer: Daohua Xu

Reviewer: Huimin Su

Design Date: 2019-11-25

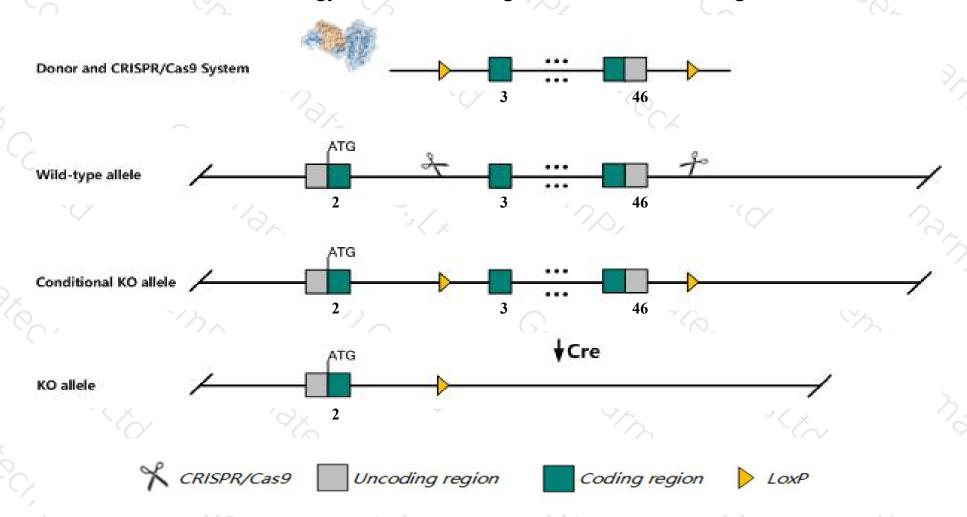
Project Overview

Project Name

Ank2

Project type

Cas9-CKO


Strain background

C57BL/6JGpt

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Ank2 gene. The schematic diagram is as follows:

Technical routes

- The *Ank2* gene has 28 transcripts. According to the structure of *Ank2* gene, exon3-exon46 of *Ank2-208* (ENSMUST00000182078.8) transcript is recommended as the knockout region. The region contains most of the coding sequence. Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Ank2* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.
- The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- ➤ According to the existing MGI data, Homozygous mutation of this gene results in death by postnatal day 8, although some animals survive to P20. Mutant animals display reduced body size, impaired balance and locomotion, brain structure dysmorphologies, abnormal lens, and optic nerve degeneration.
- > The Ank2 gene is located on the Chr3. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Ank2 ankyrin 2, brain [Mus musculus (house mouse)]

Gene ID: 109676, updated on 7-Apr-2019

Summary

☆ ?

Official Symbol Ank2 provided by MGI

Official Full Name ankyrin 2, brain provided by MGI

Primary source MGI:MGI:88025

See related Ensembl:ENSMUSG00000032826

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

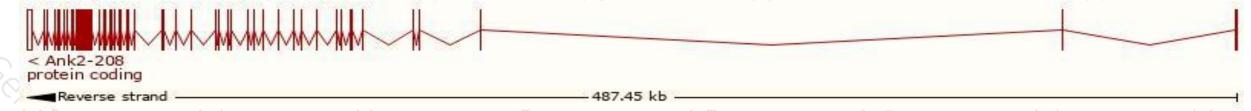
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

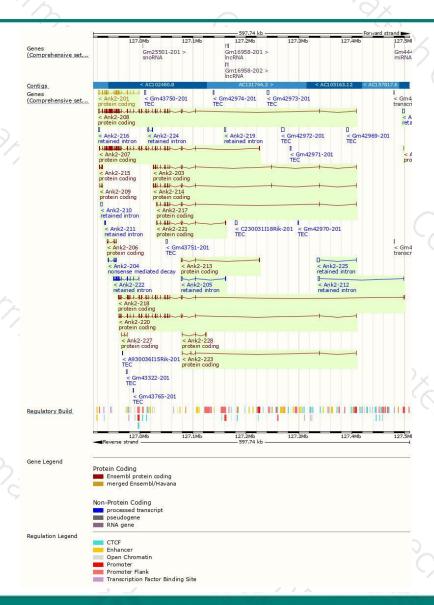
Also known as 100043364, Al835472, AW491075, Ank-2, Gm4392

Expression Biased expression in cerebellum adult (RPKM 17.1), frontal lobe adult (RPKM 13.9) and 9 other tissuesSee more

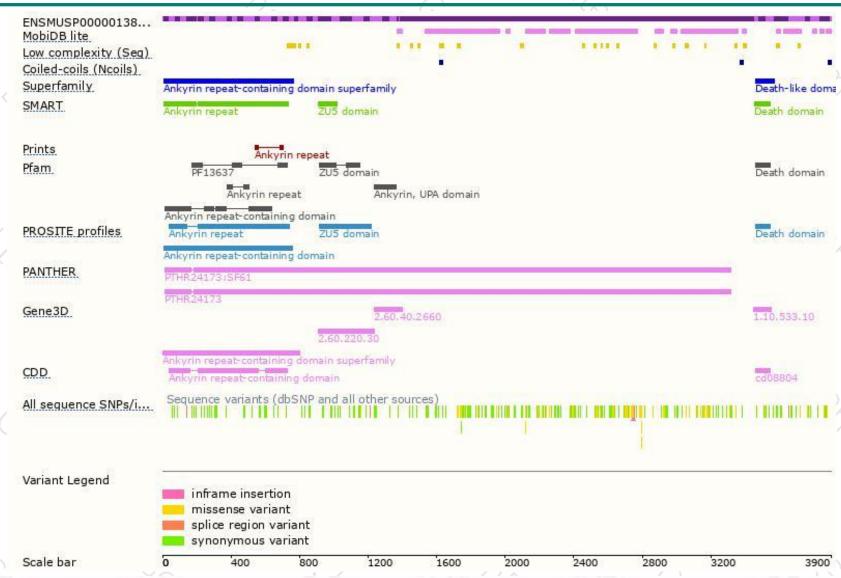
Orthologs <u>human</u> all

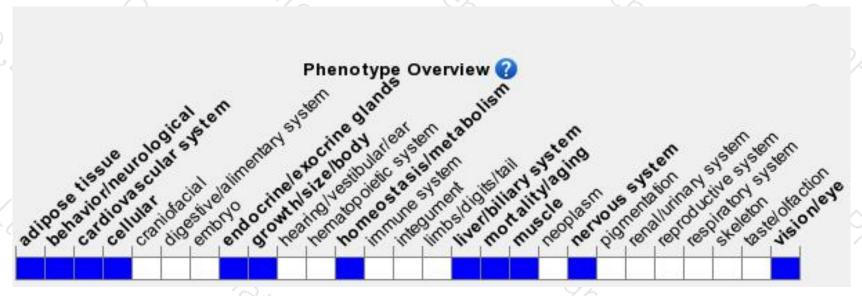

Transcript information (Ensembl)

The gene has 28 transcripts, all transcripts are shown below:


Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Ank2-208	ENSMUST00000182078.8	14305	3900aa	Protein coding	CCDS84672	S4R2R5	TSL:5 GENCODE basic APPRIS P2
Ank2-201	ENSMUST00000044443.14	5775	1050aa	Protein coding	CCDS38625	Q8C8R3	TSL:1 GENCODE basic
Ank2-207	ENSMUST00000182064.8	12413	3926aa	Protein coding	1/20	S4R2F3	TSL:5 GENCODE basic APPRIS ALT2
Ank2-218	ENSMUST00000182711.7	4268	1219aa	Protein coding	192	S4R2T7	CDS 3' incomplete TSL:1
Ank2-220	ENSMUST00000182959.7	3536	1114aa	Protein coding	150	S4R1J9	CDS 3' incomplete TSL:5
Ank2-221	ENSMUST00000182994.7	2715	454aa	Protein coding	696	Q8C8R3	TSL:1 GENCODE basic
Ank2-203	ENSMUST00000182008.7	2474	481aa	Protein coding	150	Q8C8R3	TSL:1 GENCODE basic
Ank2-214	ENSMUST00000182547.7	2428	489aa	Protein coding	192	S4R2D6	TSL:1 GENCODE basic
Ank2-217	ENSMUST00000182610.7	2231	418aa	Protein coding	1.50	S4R1I1	TSL:1 GENCODE basic
Ank2-215	ENSMUST00000182571.2	848	183aa	Protein coding	(8)	S4R2Q9	CDS 5' incomplete TSL:5
Ank2-206	ENSMUST00000182062.7	561	187aa	Protein coding	(40)	S4R1M4	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:3
Ank2-228	ENSMUST00000238781.1	557	112aa	Protein coding	192	- 0	CDS 3' incomplete
Ank2-213	ENSMUST00000182452.7	458	124aa	Protein coding	151	S4R1U2	CDS 3' incomplete TSL:5
Ank2-223	ENSMUST00000183095.2	420	90aa	Protein coding	(9)	S4R241	CDS 3' incomplete TSL:5
Ank2-209	ENSMUST00000182118.8	367	122aa	Protein coding	940	S4R1Q5	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:5
Ank2-227	ENSMUST00000211813.1	365	121aa	Protein coding	-	A0A1D5RLB2	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:5
Ank2-226	ENSMUST00000189368.1	339	113aa	Protein coding	-	A0A087WRM9	TSL:NA GENCODE basic
Ank2-204	ENSMUST00000182025.5	448	108aa	Nonsense mediated decay	(8)	S4R1B7	CDS 5' incomplete TSL:5
Ank2-225	ENSMUST00000183234.2	4550	No protein	Retained intron	(4)		TSL:1
Ank2-202	ENSMUST00000104965.3	3154	No protein	Retained intron	192	- 8	TSL:NA
Ank2-212	ENSMUST00000182316.2	3134	No protein	Retained intron	1.53		TSL:1
Ank2-210	ENSMUST00000182212.2	2781	No protein	Retained intron			TSL:NA
Ank2-224	ENSMUST00000183097.1	2668	No protein	Retained intron	140	-	TSL:1
Ank2-222	ENSMUST00000183075.1	2630	No protein	Retained intron		-	TSL:1
Ank2-205	ENSMUST00000182050.2	2540	No protein	Retained intron	(5)	-	TSL:1
Ank2-219	ENSMUST00000182876.1	2491	No protein	Retained intron	(5)		TSL:NA
Ank2-216	ENSMUST00000182588.4	2359	No protein	Retained intron	(2)	-	TSL:NA
Ank2-211	ENSMUST00000182271.1	623	No protein	Retained intron	100	- 8	TSL:3
1 .			7.0	1 1 1			

The strategy is based on the design of *Ank2-208* transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Homozygous mutation of this gene results in death by postnatal day 8, although some animals survive to P20. Mutant animals display reduced body size, impaired balance and locomotion, brain structure dysmorphologies, abnormal lens, and optic nerve degeneration.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

