Abhd6 Cas9-CKO Strategy **Designer:** Huan Wang **Reviewer:** Huan Fan **Design Date:** 2020-5-12 # **Project Overview** **Project Name** Abhd6 **Project type** Cas9-CKO Strain background C57BL/6JGpt ## Conditional Knockout strategy This model will use CRISPR/Cas9 technology to edit the *Abhd6* gene. The schematic diagram is as follows: ### Technical routes - The *Abhd6* gene has 3 transcripts. According to the structure of *Abhd6* gene, exon3-exon5 of *Abhd6-202* (ENSMUST00000166497.8) transcript is recommended as the knockout region. The region contains 404bp coding sequence. Knock out the region will result in disruption of protein function. - In this project we use CRISPR/Cas9 technology to modify *Abhd6* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice. - The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types. ### **Notice** - > According to the existing MGI data, homozygous null mice show increased glucose-stimulated insulin secretion from islets which exhibit elevated monoacylglycerol content in response to glucose. - ➤ The *Abhd6* gene is located on the Chr14. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome. - ➤ This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level. ### Gene information (NCBI) #### Abhd6 abhydrolase domain containing 6 [Mus musculus (house mouse)] Gene ID: 66082, updated on 13-Mar-2020 #### Summary ☆ ? Official Symbol Abhd6 provided by MGI Official Full Name abhydrolase domain containing 6 provided by MGI Primary source MGI:MGI:1913332 See related Ensembl: ENSMUSG00000025277 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as 0610041D24Rik, AA673485, AV065425 Expression Ubiquitous expression in adrenal adult (RPKM 11.3), large intestine adult (RPKM 9.3) and 28 other tissuesSee more Orthologs human all # Transcript information (Ensembl) The gene has 3 transcripts, all transcripts are shown below: | Name | Transcript ID | bp | Protein | Biotype | CCDS | UniProt | Flags | |-----------|----------------------|------|---------|----------------|-----------|------------------------------|---| | Abhd6-202 | | 2226 | | Protein coding | | | TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS P | | | | | | | CCD320000 | 30 Sept. 2000 - 10 Sept. 200 | Septimental control of the septiment | | Abhd6-201 | ENSMUST00000026313.3 | 1401 | 336aa | Protein coding | CCDS26808 | Q8R2Y0 | TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS P | | Abhd6-203 | ENSMUST00000225234.1 | 1958 | 289aa | Protein coding | 0 | Q8R2Y0 Q9D375 | GENCODE basic | The strategy is based on the design of *Abhd6-202* transcript, the transcription is shown below ### Genomic location distribution ### Protein domain # Mouse phenotype description(MGI) Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/). According to the existing MGI data, homozygous null mice show increased glucose-stimulated insulin secretion from islets which exhibit elevated monoacylglycerol content in response to glucose. If you have any questions, you are welcome to inquire. Tel: 400-9660890