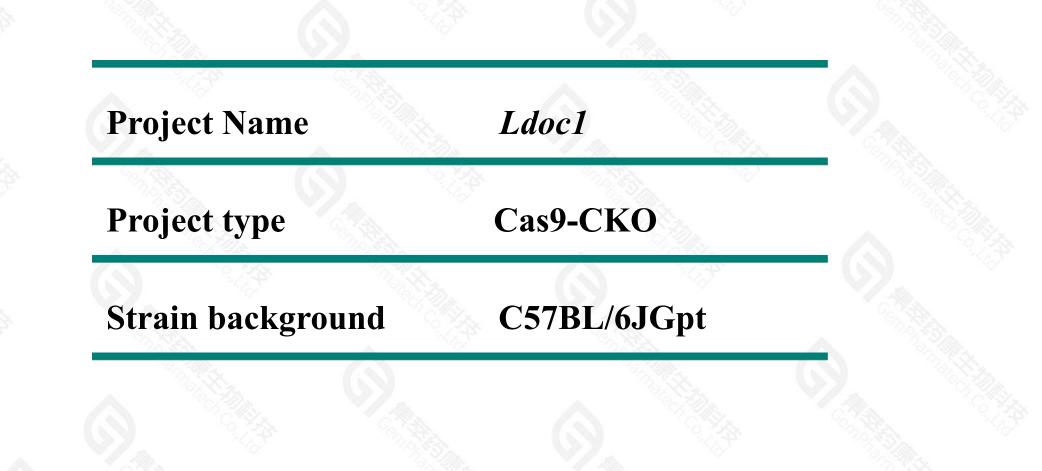


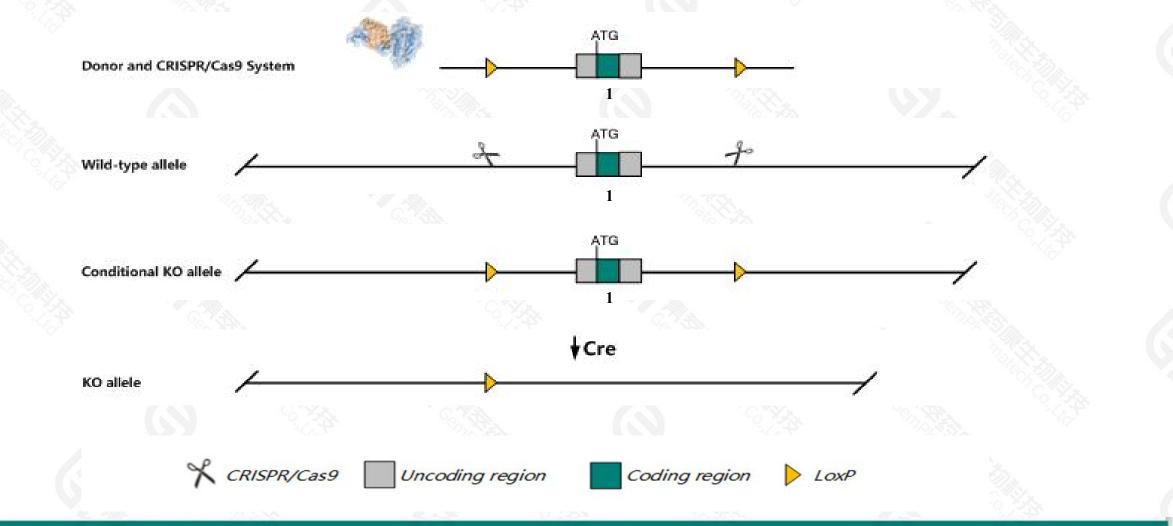
Ldoc1 Cas9-CKO Strategy


Designer: Lingyan Wu

Reviewer: Miaomiao Cui

Design Date: 2021-2-23

Project Overview



GemPharmatech Co., Ltd.

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Ldoc1* gene. The schematic diagram is as follows:

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

Technical routes

> The *Ldoc1* gene has 1 transcript. According to the structure of *Ldoc1* gene, exon1 of *Ldoc1-201*(ENSMUST00000075983.5) transcript is recommended as the knockout region. The region contains all of the coding sequence. Knock out the region will result in disruption of protein function.

➤ In this project we use CRISPR/Cas9 technology to modify Ldoc1 gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice.Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.

> The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

- > According to the existing MGI data, mice homozygous for a null allele display delayed parturtion, placental abnormalities, and impaired ability to raise pups to weaning.
- The *Ldoc1* gene is located on the ChrX. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
 This strategy is designed based on genetic information in existing databases.Due to the complexity of biological processes,all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at
- existing technological level.

Gene information (NCBI)

Ldoc1 regulator of NFKB signaling [Mus musculus (house mouse)]

Gene ID: 434784, updated on 13-Mar-2020

Summary

Official Symbol	Ldoc1 provided by MGI
Official Full Name	regulator of NFKB signaling provided by MGI
Primary source	MGI:MGI:2685212
See related	Ensembl:ENSMUSG00000057615
Gene type	protein coding
RefSeq status	VALIDATED
Organism	Mus musculus
Lineage	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus
Also known as	Gm366, Mar7, Mart7, Rtl7, Sirh7
Orthologs	human all

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

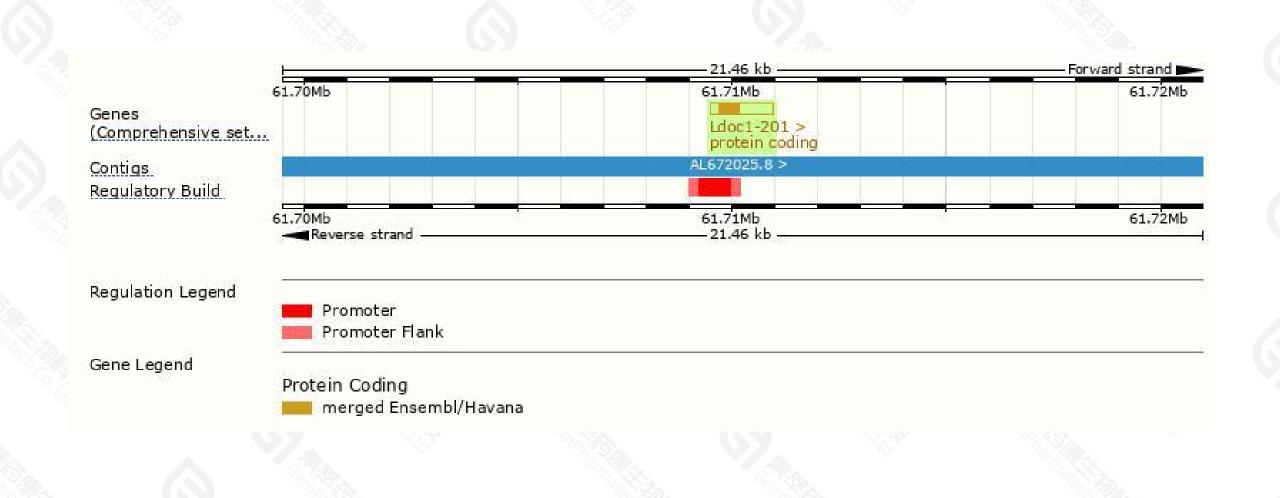
400-9660890

Transcript information (Ensembl)

The gene has 1 transcript, and the transcript is shown below:

	Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags	
1	Ldoc1-201	ENSMUST00000075983.5	1459	<u>151aa</u>	Protein coding	CCDS30163	Q7TPY9	TSL:NA GENCODE basic APPRIS P1	

The strategy is based on the design of *Ldoc1-201* transcript, the transcription is shown below:


-				1.46 kb				
Ldoc1-201 > protein coding								- 11
19.7 <i>7.0</i> 1.	10	10 I Q.	2.3	0.255	Sta Bar			

GemPharmatech Co., Ltd.

集萃药康 GemPharmatech

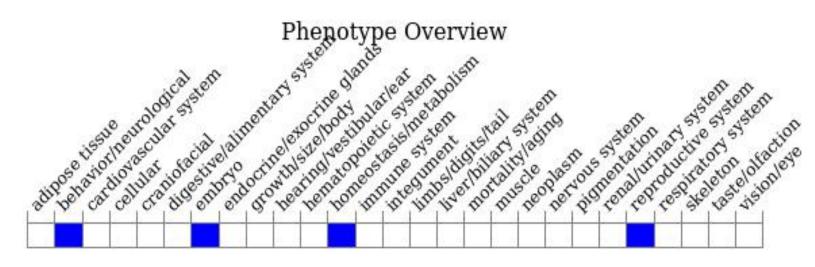
Genomic location distribution

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

400-9660890

Protein domain



江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

400-9660890

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue. Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, mice homozygous for a null allele display delayed parturtion, placental abnormalities, and impaired ability to raise pups to weaning.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

