

Zbtb18 Cas9-KO Strategy

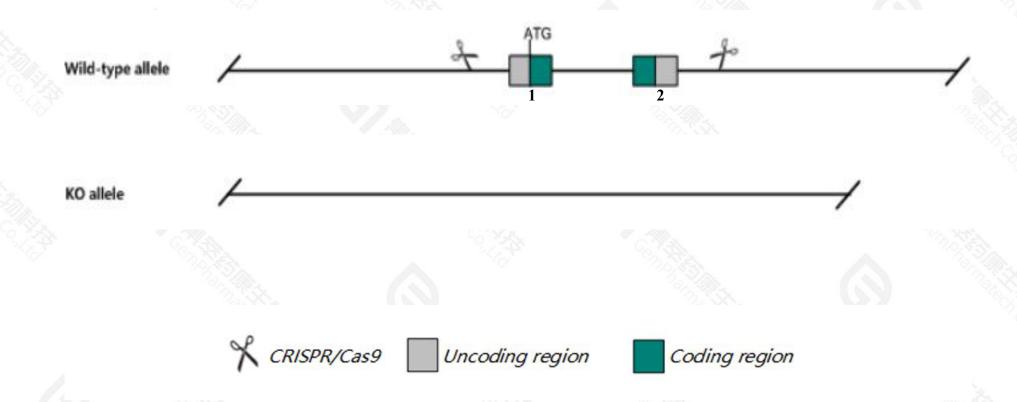
Designer: Huan Wang

Reviewer: Yumeng Wang

Design Date: 2021-2-26

Project Overview

Project Name Zbtb18


Project type Cas9-KO

Strain background C57BL/6JGpt

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Zbtb18 gene. The schematic diagram is as follows:

Technical routes

- The *Zbtb18* gene has 12 transcripts. According to the structure of *Zbtb18* gene, exon1-exon2 of *Zbtb18*-202(ENSMUST00000094276.4) transcript is recommended as the knockout region. The region contains all of the coding sequence. Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Zbtb18* gene. The brief process is as follows: CRISPR/Cas9 system were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.

Notice

- > According to the existing MGI data,mice homozygous for a knock-out allele exhibit neonatal lethality, cortical and hippocampal hypoplasia and laminar disorganization, and abnormal neuron apoptosis and cell cycling.
- The KO region contains functional region of the Gm26801-201. Knockout the region may affect the function of Gm26801-201 gene.
- > The Zbtb18 gene is located on the Chr1. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Zbtb18 zinc finger and BTB domain containing 18 [Mus musculus (house mouse)]

Gene ID: 30928, updated on 13-Mar-2020

Summary

☆ ?

Official Symbol Zbtb18 provided by MGI

Official Full Name zinc finger and BTB domain containing 18 provided by MGI

Primary source MGI:MGI:1353609

See related Ensembl: ENSMUSG00000063659

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

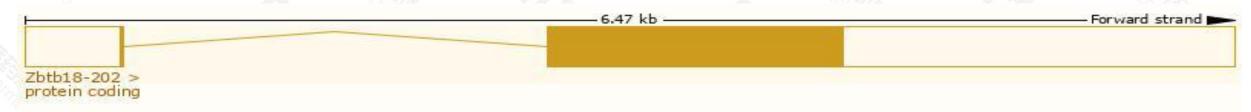
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;

Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus

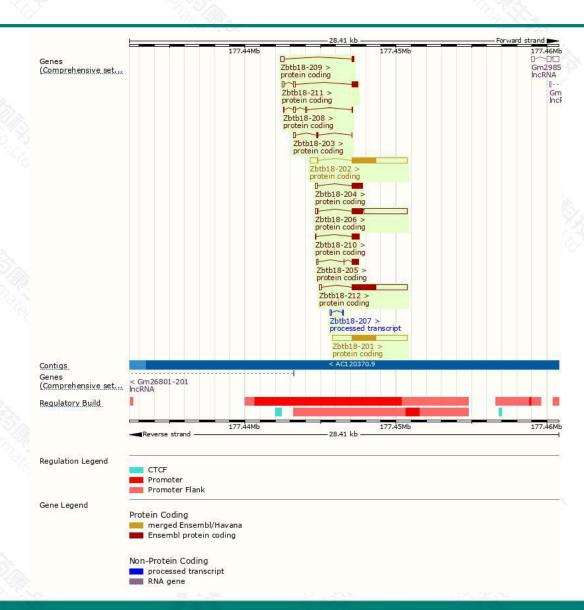
Also known as RP58, Zfp238, Znf238., zfp-238

Expression Broad expression in cerebellum adult (RPKM 43.4), CNS E18 (RPKM 26.5) and 23 other tissuesSee more

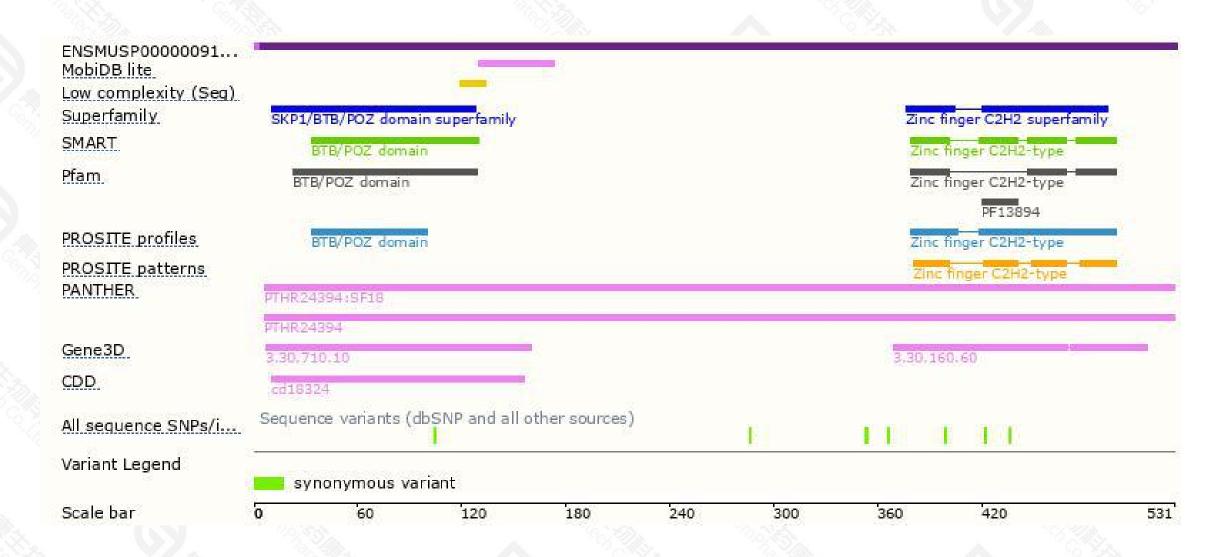
Orthologs <u>human all</u>

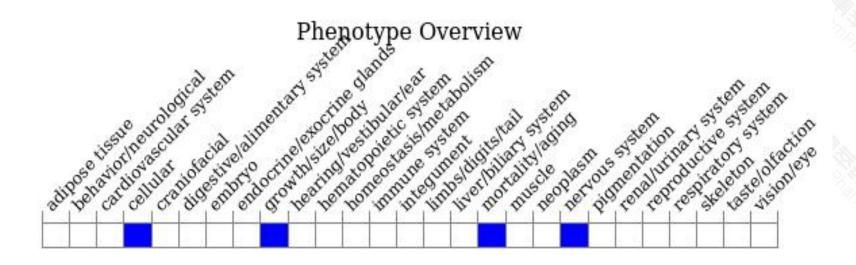

Transcript information (Ensembl)

The gene has 12 transcripts, all transcripts are shown below:


Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Zbtb18-201	ENSMUST00000077225.7	4944	522aa	Protein coding	CCDS15553	Q9WUK6	TSL:NA GENCODE basic APPRIS P3
Zbtb18-202	ENSMUST00000094276.4	4204	<u>531aa</u>	Protein coding	CCDS35800	H7BX69	TSL:2 GENCODE basic APPRIS ALT1
Zbtb18-212	ENSMUST00000195612.1	3790	522aa	Protein coding	CCDS15553	Q9WUK6	TSL:1 GENCODE basic APPRIS P3
Zbtb18-206	ENSMUST00000193480.1	3734	236aa	Protein coding	1.00	A0A0A6YWR6	TSL:1 GENCODE basic
Zbtb18-204	ENSMUST00000192851.1	857	<u>228aa</u>	Protein coding	525	A0A0A6YY33	CDS 3' incomplete TSL:5
Zbtb18-211	ENSMUST00000195549.5	646	128aa	Protein coding	. 628	A0A0A6YXP2	CDS 3' incomplete TSL:3
Zbtb18-205	ENSMUST00000193440.1	549	<u>138aa</u>	Protein coding	-	A0A0A6YW03	CDS 3' incomplete TSL:5
Zbtb18-210	ENSMUST00000195388.1	525	<u>161aa</u>	Protein coding	20	A0A0A6YWT8	CDS 3' incomplete TSL:5
Zbtb18-209	ENSMUST00000195002.1	394	<u>45aa</u>	Protein coding		A0A0A6YXT0	CDS 3' incomplete TSL:1
Zbtb18-208	ENSMUST00000194319.1	335	<u>14aa</u>	Protein coding	-	A0A0A6YX98	CDS 3' incomplete TSL:5
Zbtb18-203	ENSMUST00000192699.1	218	<u>7aa</u>	Protein coding	858	A0A1Y7VJC4	CDS 3' incomplete TSL:5
Zbtb18-207	ENSMUST00000194269.1	100	No protein	Processed transcript	1-1	-	TSL:5

The strategy is based on the design of *Zbtb18-202* transcript, the transcription is shown below:


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data,mice homozygous for a knock-out allele exhibit neonatal lethality, cortical and hippocampal hypoplasia and laminar disorganization, and abnormal neuron apoptosis and cell cycling

If you have any questions, you are welcome to inquire.

Tel: 400-9660890

