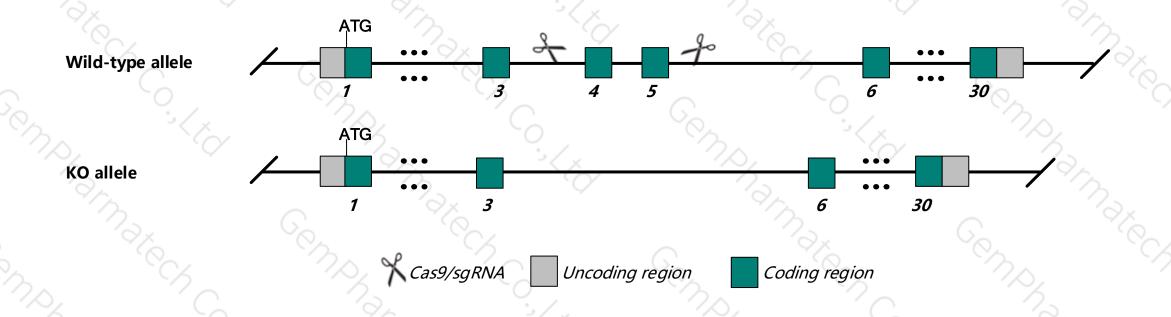


Kenmal Cas9-KO Strategy Romphamakech Co. 1/4

Designer: Ruirui Zhang

Project Overview

Project Name Kcnma1


Project type Cas9-KO

Strain background C57BL/6J

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Kcnma1* gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Kcnma1* gene has 38 transcripts. According to the structure of *Kcnma1* gene, exon4-exon5 of *Kcnma1-212* (
 ENSMUST00000188285.6) transcript is recommended as the knockout region. The region contains 206bp coding sequence.

 Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Kcnma1* gene. The brief process is as follows: sgRNA was transcribed in vitro.Cas9 and sgRNA were microinjected into the fertilized eggs of C57BL/6J mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6J mice.

Notice

- ➤ According to the existing MGI data, Homozygous inactivation of this gene leads to cerebellar ataxia,

 Purkinje cell dysfunction, uneven gait patterns, bladder hyperactivity, urinary incontinence, abnormal colonic K+ secretion, and hearing impairment.
- ➤ The *Kcnma1* gene is located on the Chr14. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- ➤ This Strategy is designed based on genetic information in existing databases. Due to the complexity of gene transcription and translation processes, all risks cannot be predicted under existing information.

Gene information (NCBI)

Kcnma1 potassium large conductance calcium-activated channel, subfamily M, alpha member 1 [Mus musculus (house mouse)]

Gene ID: 16531, updated on 31-Jan-2019

Summary

Official Symbol Kcnma1 provided by MGI

Official Full Name potassium large conductance calcium-activated channel, subfamily M, alpha member 1 provided by MGI

Primary source MGI:MGI:99923

See related Ensembl:ENSMUSG00000063142

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

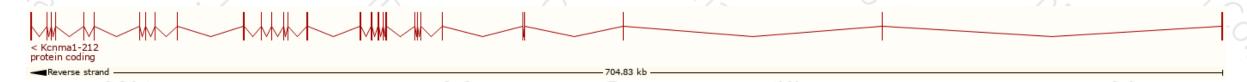
Muroidea; Muridae; Murinae; Mus; Mus

Also known as 5730414M22Rik, BKCa, MaxiK, Slo, Slo1, mSlo, mSlo1

Expression Biased expression in cortex adult (RPKM 10.4), frontal lobe adult (RPKM 9.3) and 12 other tissues See more

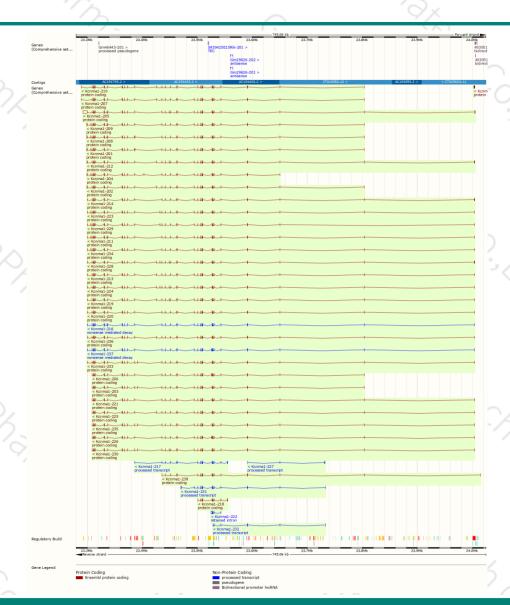
Orthologs <u>human</u> all

Transcript information (Ensembl)


The gene has 38 transcripts, all transcripts are shown below:

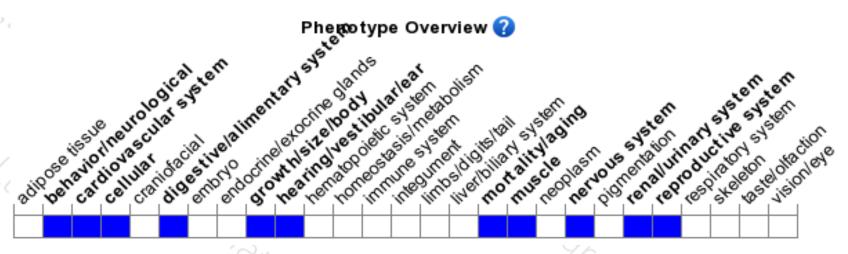
Γ.	_	/						V.
	Name	Transcript ID A		Protein	Biotype	CCDS	UniProt	Flags
	Kcnma1-201	ENSMUST00000065788.14	4524	<u>1108aa</u>	Protein coding	-	<u>F6ZSN2</u> ₽	TSL:5 GENCODE basic
	Kcnma1-202	ENSMUST00000074983.12	3974	<u>1107aa</u>	Protein coding	-	<u>F6XW53</u> ₽	TSL:5 GENCODE basic APPRIS ALT2
	Kcnma1-203	ENSMUST00000100831.10	3261	<u>1086aa</u>	Protein coding	-	<u>F6V0P5</u> ₽	TSL:5 GENCODE basic
	Kcnma1-204	ENSMUST00000112423.9	3664	<u>1055aa</u>	Protein coding	-	<u>F7BHL0</u> ₽	TSL:5 GENCODE basic
	Kcnma1-205	ENSMUST00000145596.2	12094	<u>1209aa</u>	Protein coding	CCDS79277₽	A0A286YD35®	TSL:NA GENCODE basic APPRIS ALT2
	Kcnma1-206	ENSMUST00000163322.2	3162	<u>1053aa</u>	Protein coding	-	<u>E9Q9P4</u> ₽	TSL:5 GENCODE basic
	Kcnma1-207	ENSMUST00000172099.8	3354	<u>1118aa</u>	Protein coding	-	F6WSZ3®	TSL:5 GENCODE basic APPRIS ALT2
	Kcnma1-208	ENSMUST00000177634.7	4605	<u>1135aa</u>	Protein coding	-	<u>J3QMT8</u> ₽	TSL:5 GENCODE basic
	Kcnma1-209	ENSMUST00000179097.7	4596	<u>1132aa</u>	Protein coding	-	<u>J3QN27</u> ₽	TSL:5 GENCODE basic
	Kcnma1-210	ENSMUST00000179836.7	3177	<u>1059aa</u>	Protein coding	-	<u>J3QP84</u> ₽	TSL:5 GENCODE basic
	Kcnma1-211	ENSMUST00000188210.7	3579	<u>1192aa</u>	Protein coding	-	E3VRY9₽	CDS 5' incomplete TSL:1
	Kcnma1-212	ENSMUST00000188285.6	4440	<u>1239aa</u>	Protein coding	CCDS79278₽	<u>A0A087WQN5</u> ₽	TSL:1 GENCODE basic APPRIS P4
	Kcnma1-213	ENSMUST00000188991.6	3711	<u>1236aa</u>	Protein coding	CCDS79276®	<u>A0A087WRS4</u> ₽	TSL:1 GENCODE basic APPRIS ALT2
	Kcnma1-214	ENSMUST00000190044.6	3747	<u>1178aa</u>	Protein coding	CCDS79275®	<u>A0A087WQ41</u> ₽	TSL:1 GENCODE basic APPRIS ALT2
	Kcnma1-215	ENSMUST00000190339.1	890	<u>191aa</u>	Protein coding	-	<u>A0A087WSQ4</u> ₽	TSL:5 GENCODE basic
	Kcnma1-216	ENSMUST00000190985.7	3429	<u>634aa</u>	Nonsense mediated decay	-	<u>A0A087WQE1</u> ₽	TSL:1
	Kcnma1-217	ENSMUST00000212542.1	1600	No protein	Processed transcript	-	-	TSL:1
	Kcnma1-218	ENSMUST00000212576.1	1217	<u>332aa</u>	Protein coding	-	A0A1D5RMA3₽	CDS 3' incomplete TSL:5
	Kcnma1-219	ENSMUST00000223655.1	3528	<u>1175aa</u>	Protein coding	-	A0A286YDC1₽	CDS 5' incomplete
	Kcnma1-220	ENSMUST00000223727.1	3339	<u>1112aa</u>	Protein coding	-	A0A286YCW3₽	CDS 5' incomplete
	Kcnma1-221	ENSMUST00000223749.1	3342	<u>1113aa</u>	Protein coding	-	E3VRZ4₽	CDS 5' incomplete
	Kcnma1-222	ENSMUST00000223847.1	2133	No protein	Retained intron	-	-	-
	Kcnma1-223	ENSMUST00000224025.1	3557	<u>1185aa</u>	Protein coding	-	A0A286YCP1₽	CDS 5' incomplete
	Kcnma1-224	ENSMUST00000224077.1	3537	<u>1178aa</u>	Protein coding	-	A0A286YCZ9₽	GENCODE basic APPRIS ALT2
	Kcnma1-225	ENSMUST00000224232.1	3516	<u>1171aa</u>	Protein coding	-	A0A286YD59₽	CDS 5' incomplete
	Kcnma1-226	ENSMUST00000224285.1	3342	<u>1113aa</u>	Protein coding	-	E3VRY6₽	CDS 5' incomplete
	Kcnma1-227	ENSMUST00000224465.1	447	No protein	Processed transcript	-	-	-
	Kcnma1-228	ENSMUST00000224468.1	3753	<u>1242aa</u>	Protein coding	-	<u>A0A286YDM6</u> ₽	GENCODE basic APPRIS ALT2
	Kcnma1-229	ENSMUST00000224787.1	3348	<u>1115aa</u>	Protein coding	-	<u>A0A286YCI9</u> ₽	CDS 5' incomplete
	Kcnma1-230	ENSMUST00000224812.1	3441	<u>1146aa</u>	Protein coding	-	A0A286YDR7₽	CDS 5' incomplete
	Kcnma1-231	ENSMUST00000224933.1	2705		Processed transcript	-	-	-
	Kcnma1-232	ENSMUST00000225305.1	732		Processed transcript	-	-	-
	Kcnma1-233	ENSMUST00000225315.1	3429	<u>1142aa</u>	Protein coding	-	A0A286YDU9₽	CDS 5' incomplete
	Kcnma1-234	ENSMUST00000225431.1	3498	<u>1165aa</u>	Protein coding	-	A0A286YE30®	CDS 5' incomplete
	Kcnma1-235	ENSMUST00000225471.1	3429	<u>1142aa</u>	Protein coding	-	A0A286YCQ2®	CDS 5' incomplete
	Kcnma1-236	ENSMUST00000225556.1	3360	<u>1119aa</u>	Protein coding	-	A0A286YCF5₽	CDS 5' incomplete
	Kcnma1-237	ENSMUST00000225794.1	3434	<u>357aa</u>	Nonsense mediated decay	-	A0A286YD36₽	CDS 5' incomplete
	Kcnma1-238	ENSMUST00000226051.1	1641	<u>477aa</u>	Protein coding	-	A0A286YDB5₽	CDS 3' incomplete

Transcript information (Ensembl)



The strategy is based on the design of *Kcnma1-212* transcript, the transcription is shown below:

Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, homozygous inactivation of this gene leads to cerebellar ataxia, Purkinje cell dysfunction, uneven gait patterns, bladder hyperactivity, urinary incontinence, abnormal colonic K+ secretion, and hearing impairment.

If you have any questions, you are welcome to inquire.

Tel: 025-5864 1534

