

Ddx58 Cas9-KO Strategy

Designer:Xueting Zhang

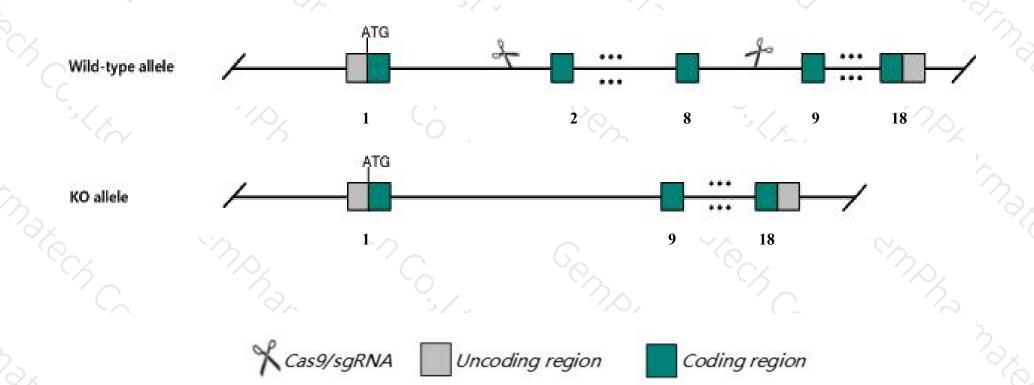
Project Overview

Project Name

Ddx58

Project type

Cas9-KO


Strain background

C57BL/6J

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Ddx58 gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Ddx58* gene has 10 transcripts. According to the structure of *Ddx58* gene, exon2-exon8 of *Ddx58-201*(ENSMUST0000037907.12) transcript is recommended as the knockout region. The region contains 1109bp coding sequence Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Ddx58* gene. The brief process is as follows: sgRNA was transcribed in vitro.Cas9 and sgRNA were microinjected into the fertilized eggs of C57BL/6J mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6J mice.

Notice

- ➤ According to the existing MGI data, Most homozygotes for a null allele die in utero with liver apoptosis while survivors show impaired IFN induction and succumb to infection with certain RNA viruses. Homozygotes for another null allele are viable but develop colitis and progressive granulocytosis leading to chronic myeloid leukemia.
- \succ The Ddx58 gene is located on the Chr4. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Ddx58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 [Mus musculus (house mouse)]

Gene ID: 230073, updated on 25-Mar-2019

Summary

☆ ?

Official Symbol Ddx58 provided by MGI

Official Full Name DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 provided by MGI

Primary source MGI:MGI:2442858

See related Ensembl:ENSMUSG00000040296

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

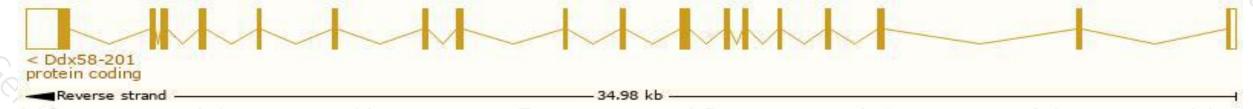
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

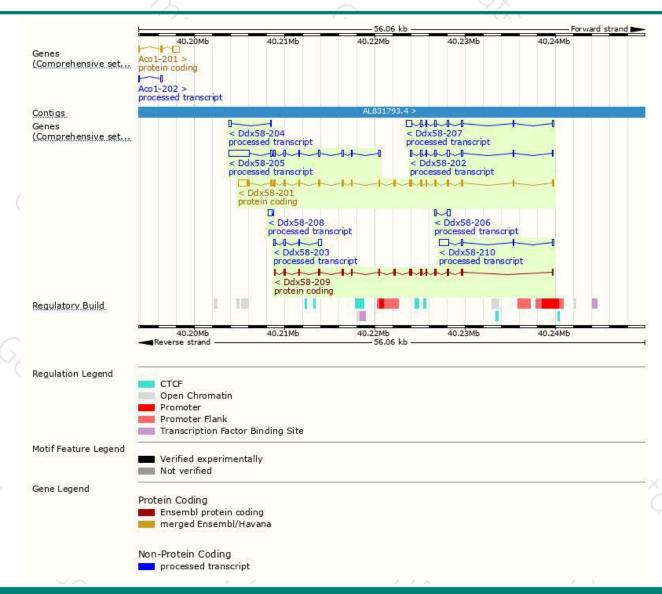
Also known as 6430573D20Rik, C330021E21, RIG-I, RLR-1

Expression Ubiquitous expression in placenta adult (RPKM 6.5), spleen adult (RPKM 6.4) and 28 other tissuesSee more

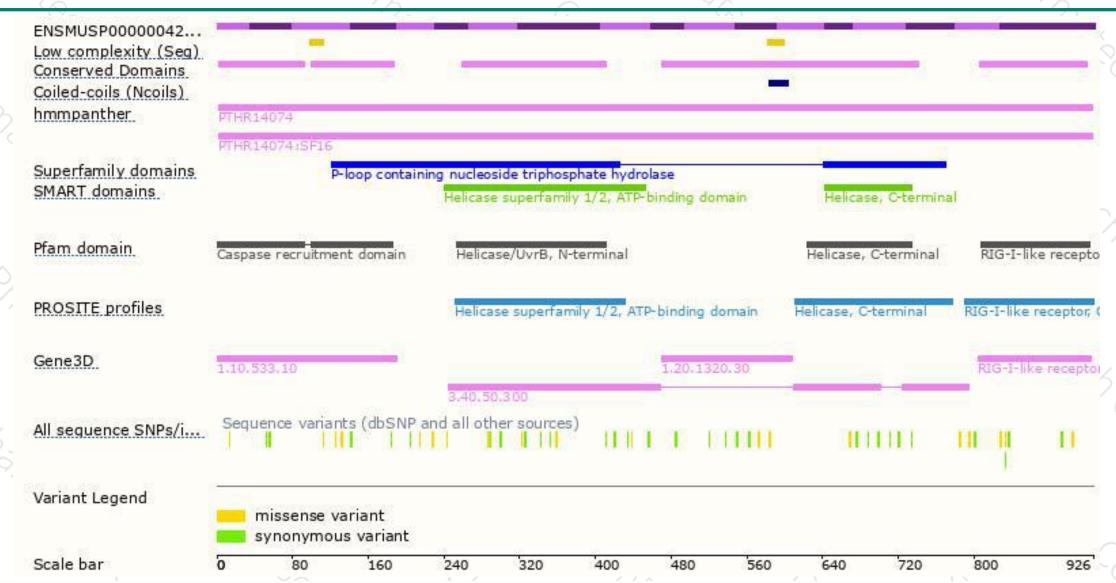
Orthologs <u>human</u> all

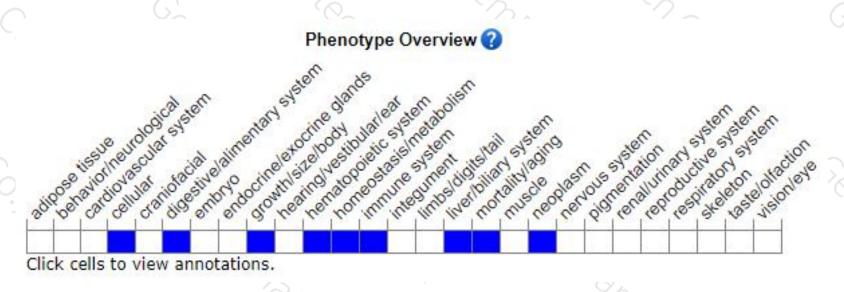

Transcript information (Ensembl)

The gene has 10 transcripts, all transcripts are shown below:


No. of Street			and the second of	/		(pm,)	
Name 🛊	Transcript ID A	bp 🖕	Protein 🍦	Biotype	CCDS 🍦	UniProt	Flags
Ddx58-201	ENSMUST00000037907.12	3874	<u>926aa</u>	Protein coding	CCDS18043@	Q6Q899₽	TSL:1 GENCODE basic APPRIS P1
Ddx58-202	ENSMUST00000127026.7	1250	No protein	Processed transcript	÷	: <u></u>	TSL:1
Ddx58-203	ENSMUST00000135966.1	756	No protein	Processed transcript	+	:e	TSL:3
Ddx58-204	ENSMUST00000136435.1	386	No protein	Processed transcript	-	: :e	TSL:3
Ddx58-205	ENSMUST00000137903.7	3533	No protein	Processed transcript	-	: ::::::::::::::::::::::::::::::::::::	TSL:1
Ddx58-206	ENSMUST00000139110.1	541	No protein	Processed transcript	+	:e	TSL:2
Ddx58-207	ENSMUST00000139583.7	1641	No protein	Processed transcript	-	: :e	TSL:1
Ddx58-208	ENSMUST00000140616.1	435	No protein	Processed transcript	-	94	TSL:3
Ddx58-209	ENSMUST00000142055.1	2127	707aa	Protein coding	-	<u>A2AP29</u> ₽	CDS 3' incomplete TSL:5
Ddx58-210	ENSMUST00000149539.1	1607	No protein	Processed transcript	-	194	TSL:1

The strategy is based on the design of Ddx58-201 transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Most homozygotes for a null allele die in utero with liver apoptosis while survivors show impaired IFN induction and succumb to infection with certain RNA viruses. Homozygotes for another null allele are viable but develop colitis and progressive granulocytosis leading to chronic myeloid leukemia.

If you have any questions, you are welcome to inquire.

Tel: 025-5864 1534

