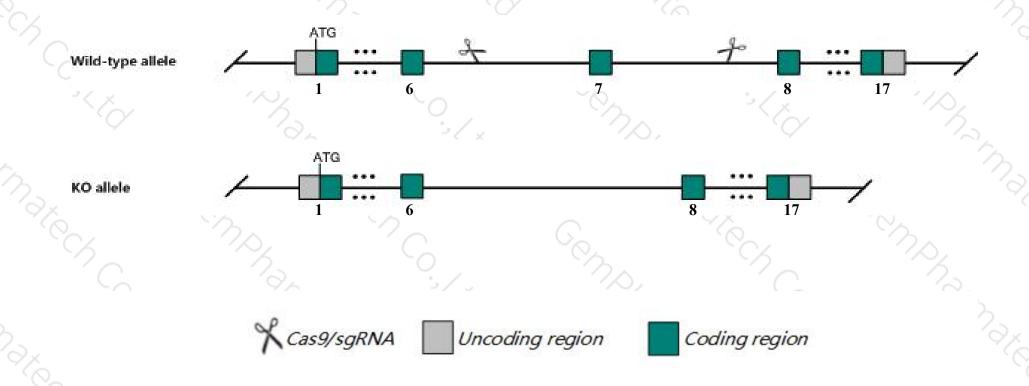


Prmt5 Cas9-KO Strategy Rohalana Koch College

Designer: Ruirui Zhang

Project Overview

Project Name Prmt5


Project type Cas9-KO

Strain background C57BL/6J

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Prmt5* gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Prmt5* gene has 7 transcripts. According to the structure of *Prmt5* gene, exon7 of *Prmt5-201*(ENSMUST00000023873.11) transcript is recommended as the knockout region. The region contains 164bp coding sequence Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Prmt5* gene. The brief process is as follows: sgRNA was transcribed in vitro.Cas9 and sgRNA were microinjected into the fertilized eggs of C57BL/6J mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. The stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6J mice.

Notice

- ➤ According to the existing MGI data, mice homozygous for a null allele display embryonic lethality before somite formation with failure of inner cell mass proliferation.
- ➤ The *Prmt5* gene is located on the Chr14. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Prmt5 protein arginine N-methyltransferase 5 [Mus musculus (house mouse)]

Gene ID: 27374, updated on 26-Mar-2019

Summary

☆ ?

Official Symbol Prmt5 provided by MGI

Official Full Name protein arginine N-methyltransferase 5 provided byMGI

Primary source MGI:MGI:1351645

See related Ensembl:ENSMUSG00000023110

Gene type protein coding
RefSeq status REVIEWED

Organism Mus musculus

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

Also known as Jbp1, Skb1

Summary This gene encodes an enzyme that belongs to the methyltransferase family. The encoded protein catalyzes the transfer of methyl groups to

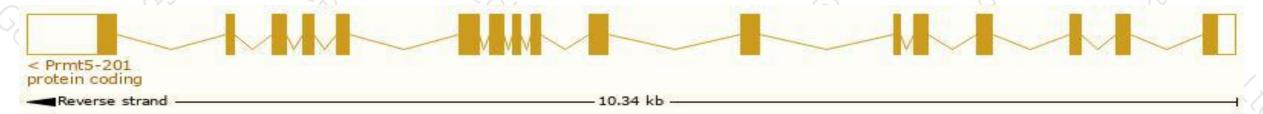
the amino acid arginine, in target proteins that include histones, transcriptional elongation factors and the tumor suppressor p53. This gene

plays a role in several cellular processes, including transcriptional regulation and the assembly of small nuclear ribonucleoproteins.

Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Sep 2015]

Expression Ubiquitous expression in CNS E11.5 (RPKM 31.6), CNS E14 (RPKM 26.3) and 28 other tissuesSee more

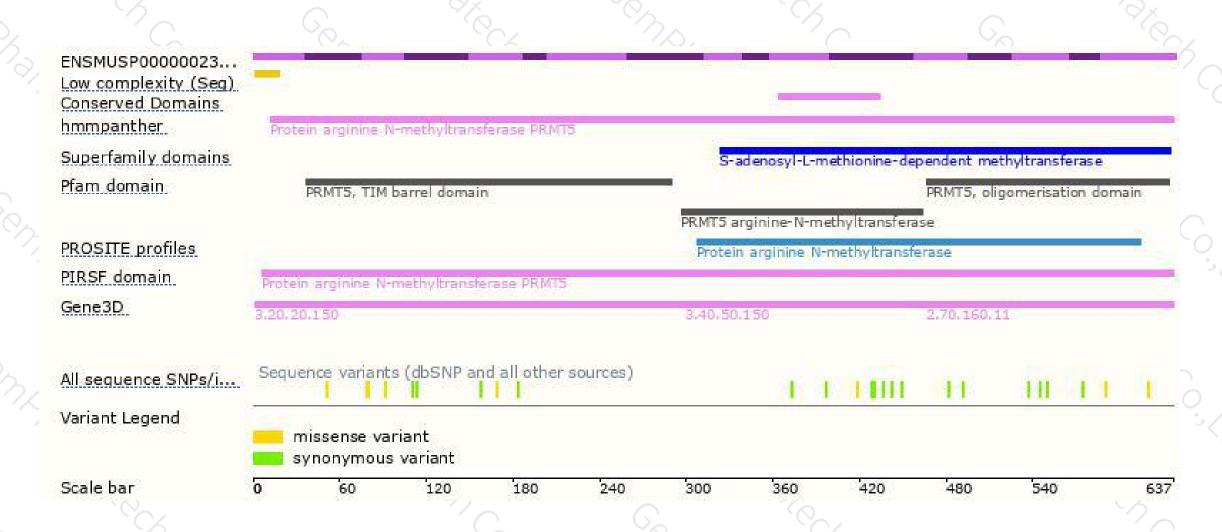
Orthologs human all

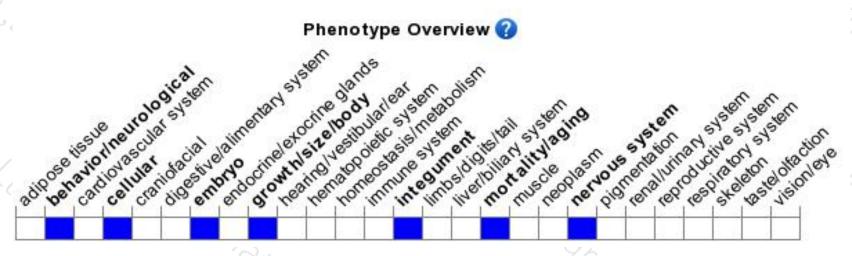

Transcript information (Ensembl)

The gene has 7 transcripts, all transcripts are shown below:

Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Prmt5-201	ENSMUST00000023873.11	2691	<u>637aa</u>	Protein coding	CCDS27091	A0A0R4J049	TSL:1 GENCODE basic APPRIS P1
Prmt5-206	ENSMUST00000139964.1	609	203aa	Protein coding	688	F6QQQ6	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:3
Prmt5-202	ENSMUST00000132227.8	1094	<u>63aa</u>	Nonsense mediated decay	020	S4R295	TSL:5
Prmt5-207	ENSMUST00000147214.7	811	<u>37aa</u>	Nonsense mediated decay	3423	A0A2I3BRG2	TSL:3
Prmt5-205	ENSMUST00000138367.1	521	No protein	Processed transcript	15.	56	TSL2
Prmt5-203	ENSMUST00000132801.1	338	No protein	Processed transcript	6.00	. ÷s	TSL:5
Prmt5-204	ENSMUST00000133552.7	1692	No protein	Retained intron	(2)	20	TSL:1

The strategy is based on the design of *Prmt5-201* transcript, the transcription is shown below:


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, mice homozygous for a null allele display embryonic lethality before somite formation with failure of inner cell mass proliferation.

If you have any questions, you are welcome to inquire.

Tel: 025-5864 1534

