

Usp48 Cas9-KO Strategy

Designer: Xueting Zhang

Reviewer: Ruirui Zhang

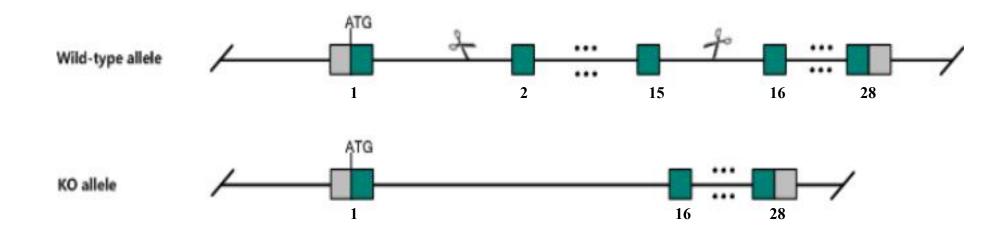
Design Date: 2023-12-26

Overview

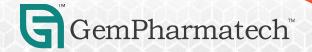
Target Gene Name

• Usp48

Project Type

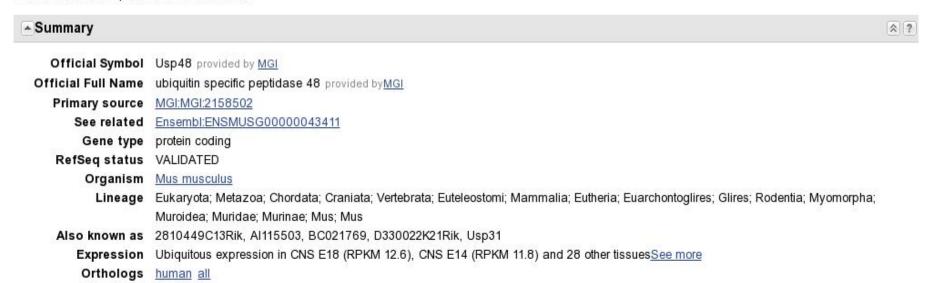

• Cas9-KO

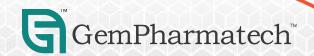
Genetic Background


• C57BL/6JGpt

Strain Strategy

Technical Information

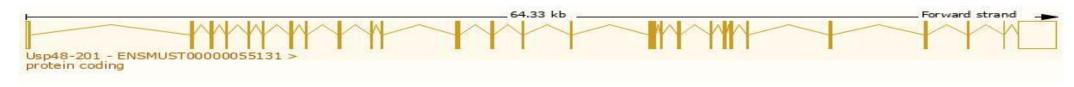

- The *Usp48* gene has 17 transcripts. According to the structure of *Usp48* gene, exon2-exon15 of *Usp48*-201 (ENSMUST00000055131.13) transcript is recommended as the knockout region. The region contains 1826bp coding sequence. Knocking out the region will result in disruption of protein function.
- In this project we use CRISPR-Cas9 technology to modify *Usp48* gene. The brief process is as follows: gRNAs were transcribed in vitro. Cas9 and gRNAs were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and ontarget amplicon sequencing. A stable F1-generation mouse strain was obtained by mating positive F0-generation mice with C57BL/6JGpt mice and confirmation of the desired mutant allele was carried out by PCR and on-target amplicon sequencing.


Gene Information

Usp48 ubiquitin specific peptidase 48 [Mus musculus (house mouse)]

Gene ID: 170707, updated on 19-Mar-2019

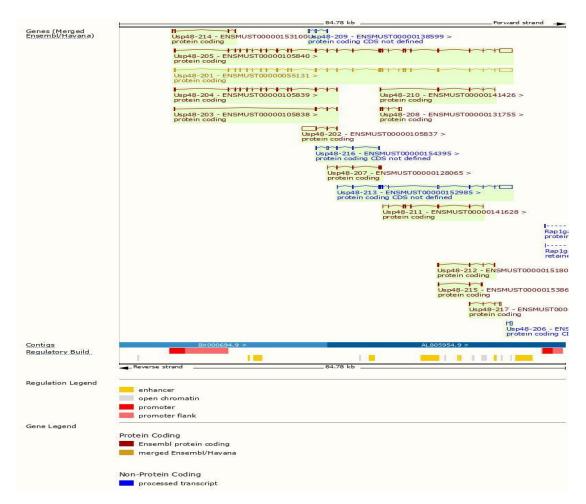
Source: https://www.ncbi.nlm.nih.gov/

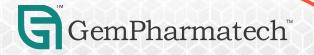


Transcript Information

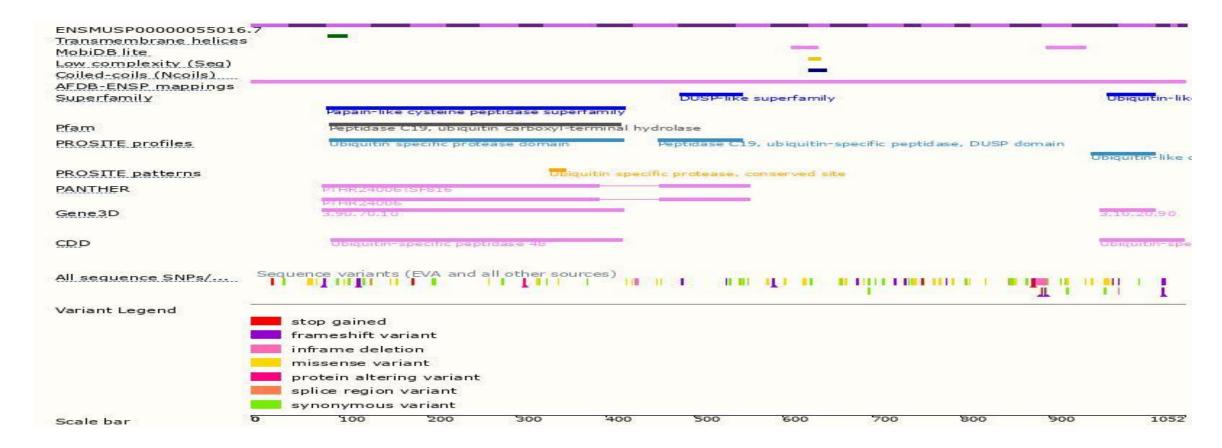
The gene has 17 transcripts, all transcripts are shown below:

Name	Transcript ID	bp	Protein	Biotype	ccps	UniProt	Flags
Usp48-205	ENSMUST00000105840.7	5741	1036aa	Protein coding	CCDS84808	A2ALR9	TSL:5 GENCODE basic APPRIS P1
Usp48-201	ENSMUST00000055131.12	5722	1052aa	Protein coding	CCDS38924	Q3V0C5	TSL:1 GENCODE basic
Usp48-202	ENSMUST00000105837.1	3036	105aa	Protein coding	32	A2ALS8	CDS 3' incomplete TSL:1
Usp48-204	ENSMUST00000105839.7	2071	631aa	Protein coding	- 12	A2ALR8	CDS 3' incomplete TSL:1
Usp48-211	ENSMUST00000141628.7	837	267aa	Protein coding	0.5	A2ALR5	CDS 3' incomplete TSL:3
Usp48-208	ENSMUST00000131755.1	694	87aa	Protein coding	100	F6Z2T3	CDS 5' incomplete TSL:3
Usp48-207	ENSMUST00000128065.1	624	170aa	Protein coding	35	F6TGT8	CDS 5' incomplete TSL:2
Usp48-214	ENSMUST00000153100.7	619	165aa	Protein coding	- 4	A2BDP2	CDS 3' incomplete TSL:3
Usp48-203	ENSMUST00000105838.7	564	106aa	Protein coding	85	A2ALS9	CDS 3' incomplete TSL:5
Usp48-215	ENSMUST00000153869.1	503	113aa	Protein coding	10-	F7ALR2	CDS 5' incomplete TSL:2
Usp48-212	ENSMUST00000151807.7	489	123aa	Protein coding	N=	F6TH61	CDS 5' incomplete TSL'3
Usp48-217	ENSMUST00000157012.2	468	85aa	Protein coding		F6VSQ9	CDS 5' incomplete TSL:3
Usp48-210	ENSMUST00000141426.7	467	156aa	Protein coding	10.5	F6VSP0	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete TSL:3
Usp48-213	ENSMUST00000152985.1	3392	No protein	Processed transcript	100		TSL:1
Usp48-216	ENSMUST00000154395.7	619	No protein	Processed transcript	10-	-	TSL:3
Usp48-209	ENSMUST00000138599.1	542	No protein	Processed transcript		- 01	TSL:3
Usp48-206	ENSMUST00000125151.1	540	No protein	Processed transcript	8.7		TSL:5


The strategy is based on the design of *Usp48*-201 transcript, the transcription is shown below:



Source: https://www.ensembl.org



Genomic Information

Protein Information

Source: : https://www.ensembl.org

Important Information

- The lethality of *Usp48* gene knockout is unknown.
- Transcript *Usp48*-206&211 may not be affected. And the effect on transcript *Usp48*-208&210&212&215&217 is unknown.
- *Usp48* is located on Chr4. If the knockout mice are crossed with other mouse strains to obtain double homozygous mutant offspring, please avoid the situation that the second gene is on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risks of the mutation on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

