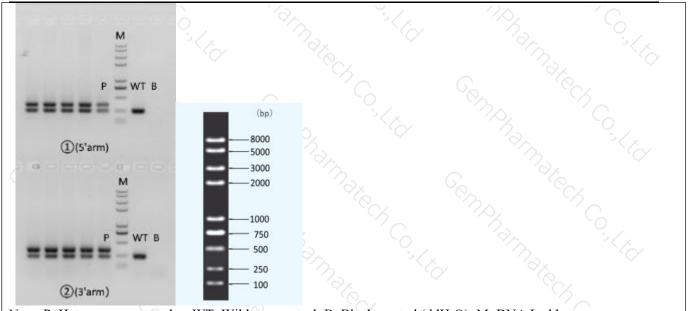


Strain ID	T052268	Strain Type	CKO(Cas9)	Genetic Background	C57BL/6JG
Designer	Ya'nan Xu	Gene Name		Myl4	°C
Strategy of (Genotyping		In and a second	C Mark	~ (V
	F1	R1			
//	F1 → ①5'a	arm +	F2 Flox	②3'arm ◀	<u>2</u> //

Wild type: ①PCR reaction obtains a single WT band; ②PCR reaction obtains a single WT band. Heterozygote: ①PCR reaction obtains a WT band and a Targeted band; ②PCR reaction obtains a WT band and a Targeted band.

Homozygote: ①PCR reaction obtains a single Targeted band; ②PCR reaction obtains a single Targeted band. Note: The sizes of WT and Targeted band are shown below.


2. Primer Information

PCR No.	Primer No.	Sequence	Band Size
(1)(5 1-mm)	T052268(P2)-F1	TCTCAGGATCAGAGCCCACATAAG	WT: 253bp Targeted: 358bp
(1)(5'arm)	T052268(P2)-R1	GATACATCAGAAATAAAGGCAAGTGGG	
	T052268(P2)-F2	CTGCAGTGGGGGGATCCAGAGATT	WT: 242bp
2(3'arm)	T052268(P2)-R2	ACGGATGGACTTGTCGCAGACTT	Targeted: 348bp

3. Gel Image & Conclusion

Note: P: Heterozygous samples; WT: Wildtype control; B: Blank control (ddH₂O); M: DNA Ladder
① Control (WT) : It is an important reference mark for whether the PCR reaction is successful and whether the product band position and size meet the theoretical requirements.
② Control (B) : PCR amplification was performed without template in the PCR reagent to monitor whether the reagent was contaminated.

4. PCR Condition

Component	×	<u>96</u> 36	
reaction co	Volume (µl)		
2 × Rapid Taq Master Mix (Vazym	12.5		
ddH2O	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.5	
Primer A(10pmol/µl)		1 And And	
Primer B(10pmol/µl)	1		
Template(20~80ng/µl)	1975 Con	1 6	
I priority selection	Ch in	2 6	
Temp.	Time	Cycle	
95°C	5min		
98°C	30s	20×	
65°C*(-0.5°C/cycle)	30s		
72℃	45s*	$\overline{\gamma}_{\lambda_{\lambda_{1}}}$	
98°C	30s	15×	
55°C*	30s	227	
72°C	45s*	· · · · · · · · · · · · · · · · · · ·	
	2 × Rapid Taq Master Mix (Vazym ddH2O Primer A(10pmol/μl) Primer B(10pmol/μl) Template(20~80ng/μl) I priority selection 95 °C 98 °C 65 °C * (-0.5 °C/cycle) 72 °C 98 °C 55 °C *	reaction component $2 \times Rapid Taq Master Mix (Vazyme P222)$ $ddH2O$ $primer A(10pmol/µl)$ $Primer B(10pmol/µl)$ $Template(20~80ng/µl)$ Time5 °C $95^{\circ}C$ $95^{\circ}C$ $98^{\circ}C$ $5^{\circ}C^{*}(-0.5^{\circ}C/cycle)$ $30s$ $72^{\circ}C$ $45s^{*}$ $98^{\circ}C$ $30s$ $55^{\circ}C^{*}$ $30s$	

9 7	10°C	Pro	hold	$\gamma_{\mathcal{O}}_{\mathcal{O}}}}}}}}}}$	í C
PCR program I	I the second choice	nax.	$\langle \phi \rangle$	~	n ilx
Seg.	Temp.		Time	C	Çycle
1	95℃	C ₂	5min	Con .	°°%
2 7.	98°C	So.	30s	33	5×
3	58°C*	ng.	30s		
4	72 °C		45s*	2	
5 7.Sz	72°C	- Co	5min	ns,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6 dr	10°C	- ^ ^ <u>> _</u>	hold	23	-0./.
		Q.	3/5		

Note*: Annealing temperature and extension time can be determined according to the actual amplification situation and amplification enzyme efficiency.