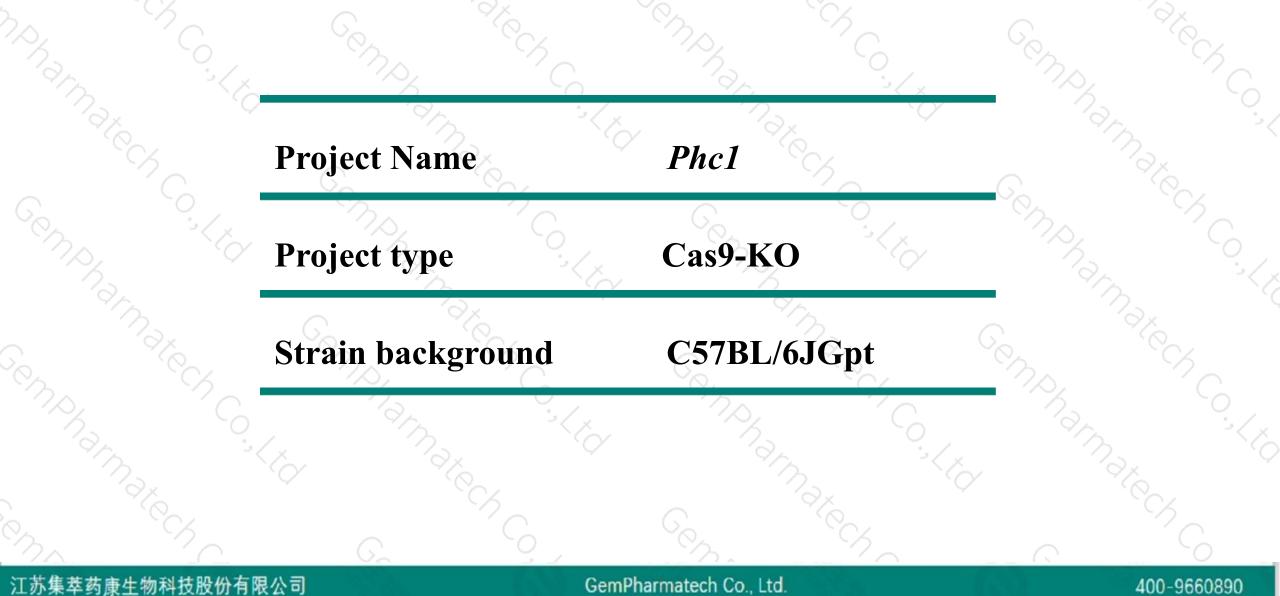


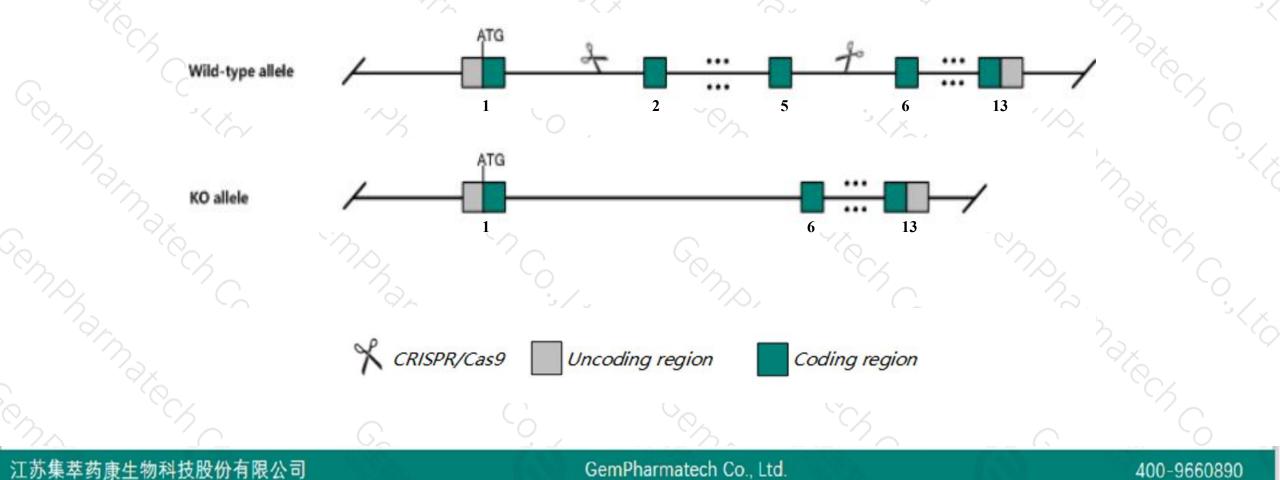
Phc1 Cas9-KO Strategy


Designer: Xueting Zhang

Reviewer: Daohua Xu

Design Date: 2020-7-21

Project Overview



Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Phc1* gene. The schematic diagram is as follows:

> The *Phc1* gene has 16 transcripts. According to the structure of *Phc1* gene, exon2-exon5 of *Phc1*-202(ENSMUST00000081849.9) transcript is recommended as the knockout region. The region contains 835bp coding sequence. Knock out the region will result in disruption of protein function.

➤ In this project we use CRISPR/Cas9 technology to modify *Phc1* gene. The brief process is as follows: CRISPR/Cas9 system were microinjected into the fertilized eggs of C57BL/6JGpt mice.Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.

According to the existing MGI data,homozygous mutant mice exhibit perinatal lethality, posterior skeletal transformations and defects in neural crest derived tissues, including ocular abnormalities, cleft palate, parathyroid and thymic hypoplasia and cardiac anomalies. Hematopoiesis is impaired in fetal livers.
The *Phc1* gene is located on the Chr6. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
This strategy is designed based on genetic information in existing databases.Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at

the existing technology level.

Gene information (NCBI)

☆ ?

Phc1 polyhomeotic 1 [Mus musculus (house mouse)]

Gene ID: 13619, updated on 13-Mar-2020

- Summary

Official SymbolPhc1 provided by MGIOfficial Full Namepolyhomeotic 1 provided by MGIPrimary sourceMGI:MGI:103248See relatedEnsembl:ENSMUSG0000040669Gene typeprotein codingRefSeq statusVALIDATEDOrganismMus musculusLineageEukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;
Muroidea; Murinae; Mus; MusAlso known asAW557034, Edr1, Mph1, Rae-28, rae28ExpressionBroad expression in testis adult (RPKM 55.8), CNS E14 (RPKM 22.1) and 20 other tissues
See moreOrthologhuman all

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

400-9660890

Transcript information (Ensembl)

400-9660890

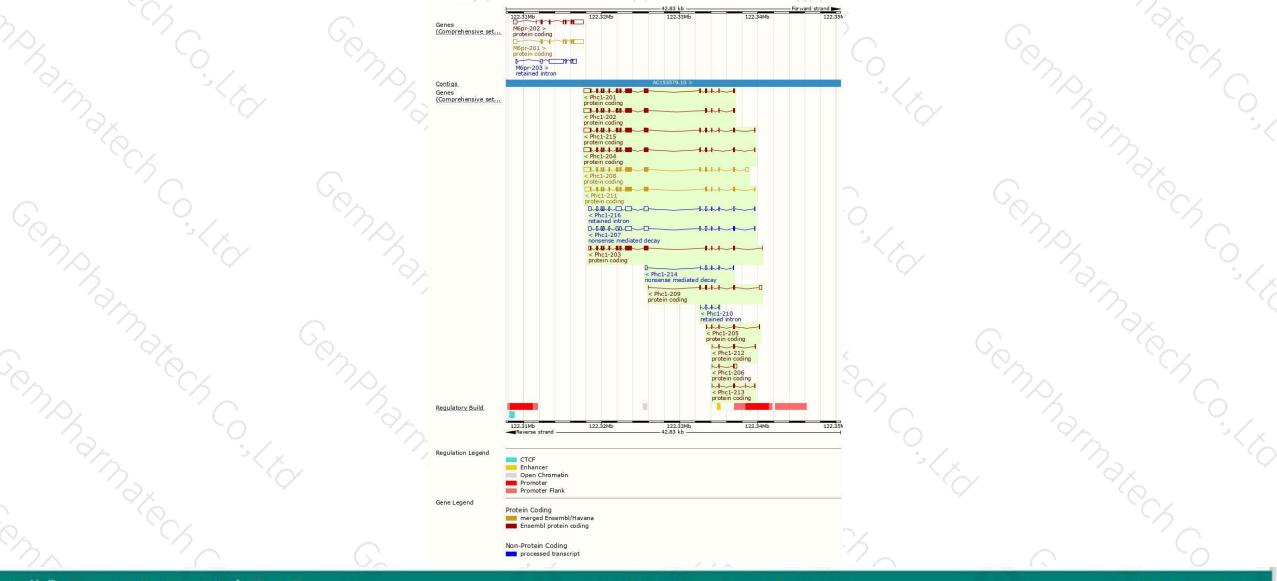
The gene has 16 transcripts, all transcripts are shown below:

Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Phc1-208	ENSMUST00000160696.7 4	1213	<u>1010aa</u>	Protein coding	CCDS20494	<u>Q7TT35</u>	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS P3
Phc1-215	ENSMUST00000161739.7	3893	<u>1010aa</u>	Protein coding	CCDS20494	<u>Q7TT35</u>	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS P3
hc1-201	ENSMUST0000079560.9	3839	<u>1010aa</u>	Protein coding	CCDS20494	Q7TT35	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS P3
hc1-202	ENSMUST0000081849.9	3683	<u>958aa</u>	Protein coding	CCDS39620	Q3V116	TSL:5 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS ALT2
hc1-211	ENSMUST00000161054.7	3612	<u>958aa</u>	Protein coding	CCDS39620	<u>Q3V116</u>	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS ALT2
hc1-203	ENSMUST00000112600.8	3127	<u>958aa</u>	Protein coding	CCDS39620	<u>Q3V116</u>	TSL:1 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS ALT
nc <mark>1-204</mark>	ENSMUST00000159252.7	3744	<u>965aa</u>	Protein coding		E0CXV8	TSL:5 GENCODE basic APPRIS is a system to annotate alternatively spliced transcripts based on a range of computational methods to identify the most functionally important transcript(s) of a gene. APPRIS ALT
nc <mark>1-20</mark> 9	ENSMUST00000160843.7	970	<u>205aa</u>	Protein coding	122	E0CXT0	CDS 3' incomplete TSL:5
hc1-206	ENSMUST00000159657.7	566	<u>80aa</u>	Protein coding		E0CYR2	CDS 3' incomplete TSL:3
nc1-205	ENSMUST00000159384.7	424	<u>117aa</u>	Protein coding	-	E0CXC9	CDS 3' incomplete TSL:3
nc1-212	ENSMUST00000161149.7	377	<u>80aa</u>	Protein coding	(-)	E0CYR2	CDS 3' incomplete TSL:5
hc1-213	ENSMUST00000161210.2	347	<u>79aa</u>	Protein coding	120	E0CXA6	CDS 3' incomplete TSL:5
hc1-207	ENSMUST00000160163.7	3289	<u>86aa</u>	Nonsense mediated decay		E0CYV8	TSL:1
hc1-214	ENSMUST00000161290.7	687	<u>69aa</u>	Nonsense mediated decay		F7D980	CDS 5' incomplete TSL:3
hc1-216	ENSMUST00000161877.7	3530	No protein	Retained intron	-	-	TSL:1
hc1-210	ENSMUST00000160863.1	410	No protein	Retained intron	120	1 <u>1</u>	TSL:5

The strategy is based on the design of *Phc1-202* transcript, the transcription is shown below:

< Phc1-202 protein coding

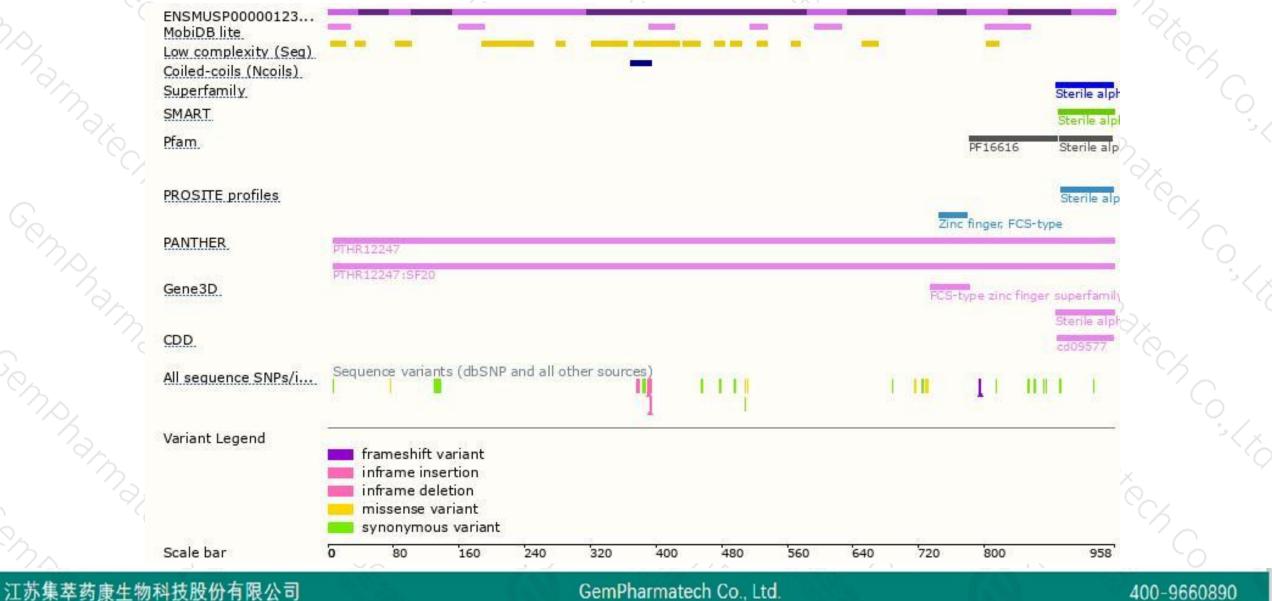
Reverse strand


江苏集萃药康生物科技股份有限公司

— 19.29 kb —

GemPharmatech Co., Ltd.

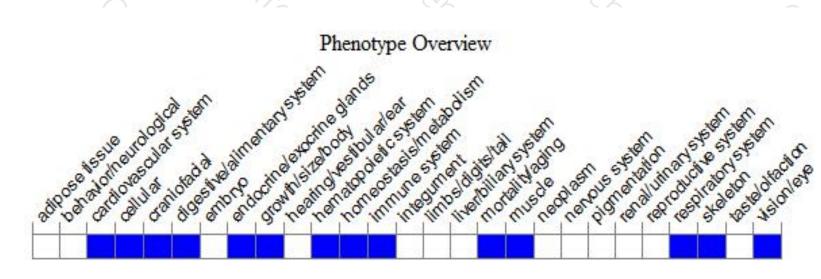
Genomic location distribution


江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

400-9660890

Protein domain



GemPharmatech Co., Ltd.

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue. Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, homozygous mutant mice exhibit perinatal lethality, posterior skeletal transformations and defects in neural crest derived tissues, including ocular abnormalities, cleft palate, parathyroid and thymic hypoplasia and cardiac anomalies. Hematopoiesis is impaired in fetal livers.

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

400-9660890

If you have any questions, you are welcome to inquire. Tel: 400-9660890

