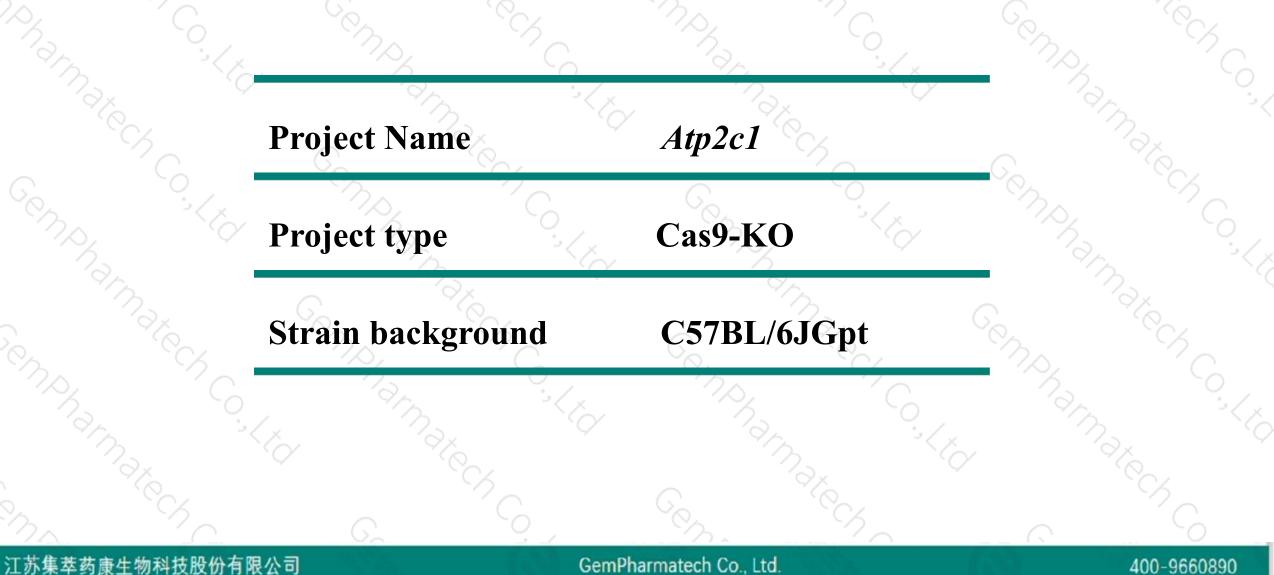


Atp2c1 Cas9-KO Strategy

Designer:

Reviewer:

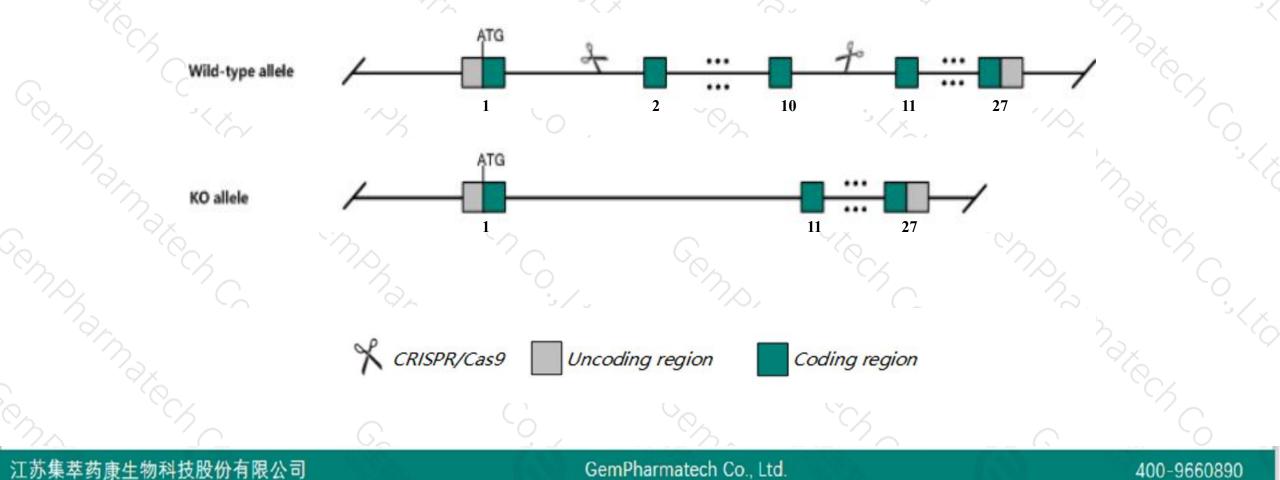
Design Date:


Daohua Xu

Huimin Su

2020-5-28

Project Overview



GemPharmatech Co., Ltd.

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Atp2c1* gene. The schematic diagram is as follows:

- The Atp2c1 gene has 21 transcripts. According to the structure of Atp2c1 gene, exon2-exon10 of Atp2c1-202 (ENSMUST00000085133.12) transcript is recommended as the knockout region. The region contains 823bp coding sequence. Knock out the region will result in disruption of protein function.
- > In this project we use CRISPR/Cas9 technology to modify Atp2c1 gene. The brief process is as follows: CRISPR/Cas9 system

- According to the existing MGI data,mice homozygous for a knock-out allele show embryonic growth retardation, failure of rostral neural tube closure, golgi and endoplasmic reticulum stress, increased apoptosis, accumulation of intracellular lipid droplets and midgestational lethality. aged heterozygotes develop squamous cell tumors.
- The Atp2c1 gene is located on the Chr9. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Notice

Gene information (NCBI)

\$?

Atp2c1 ATPase, Ca++-sequestering [Mus musculus (house mouse)]

Gene ID: 235574, updated on 13-Mar-2020

Summary

Official Symbol	Atp2c1 provided by MGI
Official Full Name	ATPase, Ca++-sequestering provided by MGI
Primary source	MGI:MGI:1889008
See related	Ensembl:ENSMUSG0000032570
Gene type	protein coding
RefSeq status	VALIDATED
Organism	Mus musculus
Lineage	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;
	Muroidea; Muridae; Murinae; Mus; Mus
Also known as	1700121J11Rik, ATP2C1A, AW061228, BCPM, D930003G21Rik, HHD, SPCA, pmr1
Expression	Ubiquitous expression in CNS E18 (RPKM 19.7), frontal lobe adult (RPKM 16.1) and 28 other tissues See more
Orthologs	human all

江苏集萃药康生物科技股份有限公司

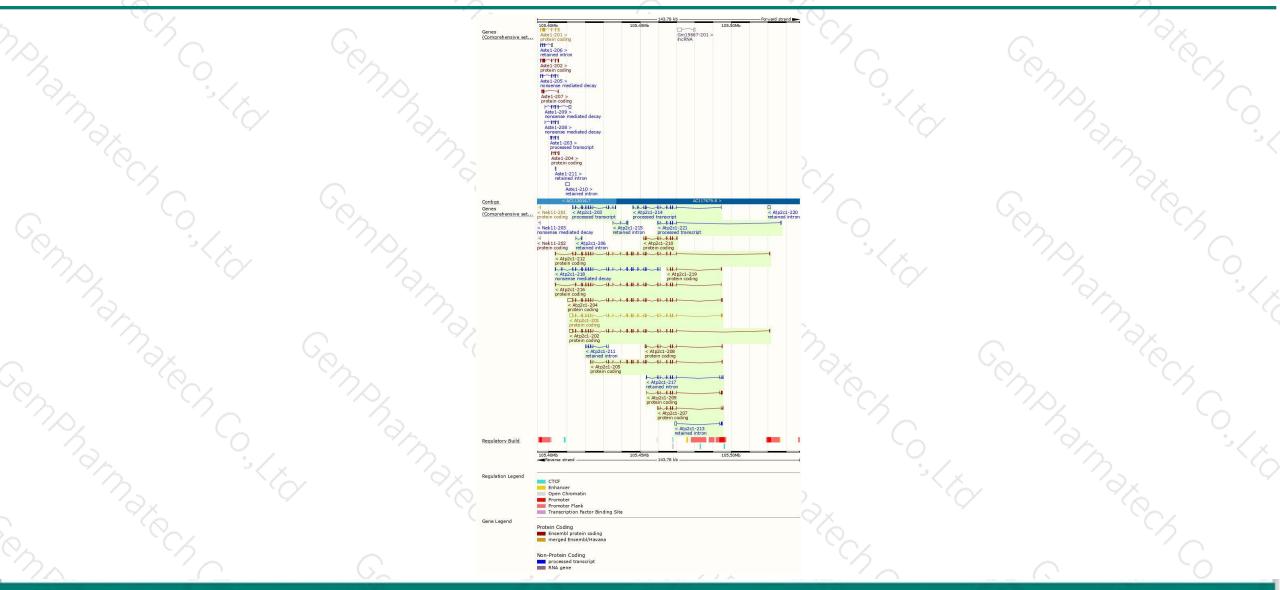
GemPharmatech Co., Ltd.

Transcript information (Ensembl)

The gene has 21 transcripts, all transcripts are shown below:

1 m							
Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Atp2c1-204	ENSMUST00000112558.9	5642	<u>918aa</u>	Protein coding	CCDS40752	Q80XR2	TSL:1 GENCODE basic APPRIS P3
Atp2c1-201	ENSMUST0000038118.14	4876	<u>918aa</u>	Protein coding	CCDS40752	Q80XR2	TSL:1 GENCODE basic APPRIS P3
Atp2c1-202	ENSMUST00000085133.12	4665	<u>952aa</u>	Protein coding	CCDS57698	Q3UZR5	TSL:1 GENCODE basic APPRIS ALT2
Atp2c1-205	ENSMUST00000163879.8	2408	<u>669aa</u>	Protein coding	CCDS57697	Q8BMS7	TSL:1 GENCODE basic
Atp2c1-212	ENSMUST00000176770.7	2781	<u>926aa</u>	Protein coding	7	H3BIX7	TSL:5 GENCODE basic
Atp2c1-216	ENSMUST00000177074.7	2664	<u>887aa</u>	Protein coding	-	H3BL44	TSL:5 GENCODE basic APPRIS ALT2
Atp2c1-209	ENSMUST00000176363.8	1082	<u>230aa</u>	Protein coding	-	H3BJY0	CDS 3' incomplete TSL:5
Atp2c1-210	ENSMUST00000176651.7	899	<u>253aa</u>	Protein coding		H3BLC2	CDS 3' incomplete TSL:5
Atp2c1-208	ENSMUST00000176190.7	823	<u>208aa</u>	Protein coding	-	H3BKB1	CDS 3' incomplete TSL:5
Atp2c1-207	ENSMUST00000176036.7	710	<u>177aa</u>	Protein coding		H3BJJ5	CDS 3' incomplete TSL:5
Atp2c1-219	ENSMUST00000177334.1	578	<u>111aa</u>	Protein coding	-	H3BJ99	CDS 3' incomplete TSL:5
Atp2c1-218	ENSMUST00000177293.7	2476	<u>786aa</u>	Nonsense mediated decay		H3BLI6	CDS 5' incomplete TSL:5
Atp2c1-203	ENSMUST00000112557.8	1514	No protein	Processed transcript	-	-	TSL:1
Atp2c1-214	ENSMUST00000176960.7	1072	No protein	Processed transcript	-		TSL:5
Atp2c1-221	ENSMUST00000190802.1	833	No protein	Processed transcript	-	2	TSL:5
Atp2c1-213	ENSMUST00000176787.1	1449	No protein	Retained intron	100	20	TSL:1
Atp2c1-220	ENSMUST00000186495.1	1413	No protein	Retained intron	-	-	TSL:NA
Atp2c1-217	ENSMUST00000177189.7	939	No protein	Retained intron			TSL:1
Atp2c1-211	ENSMUST00000176656.1	691	No protein	Retained intron	-	~	TSL:3
Atp2c1-215	ENSMUST00000177000.1	642	No protein	Retained intron	2 C		TSL:3
Atp2c1-206	ENSMUST00000175697.1	255	No protein	Retained intron	-		TSL:3

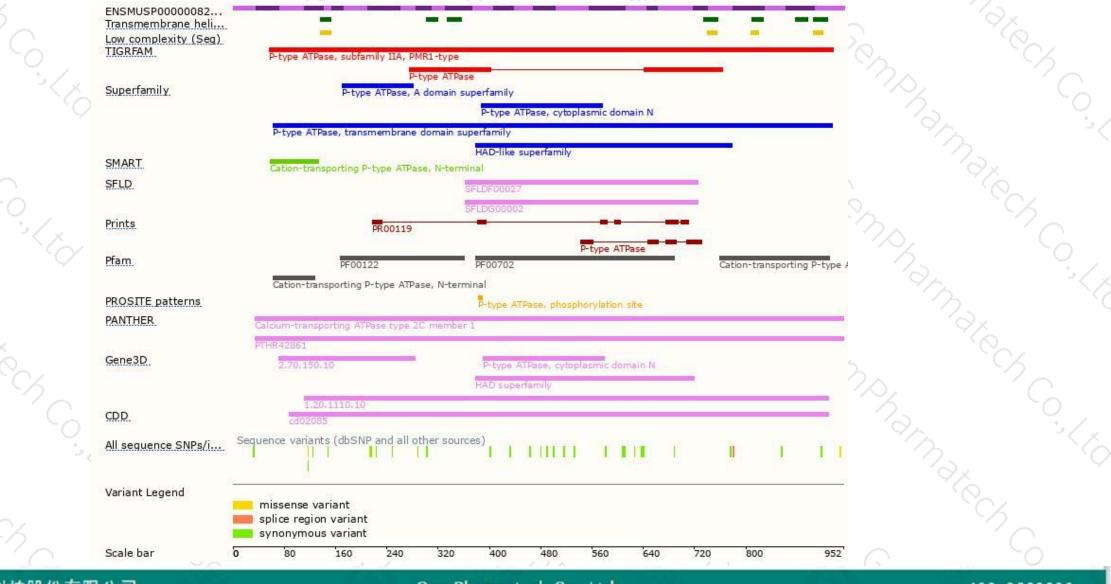
The strategy is based on the design of *Atp2c1-202* transcript, the transcription is shown below:


< Atp2c1-202 protein coding

Reverse strand

- 109.89 kb

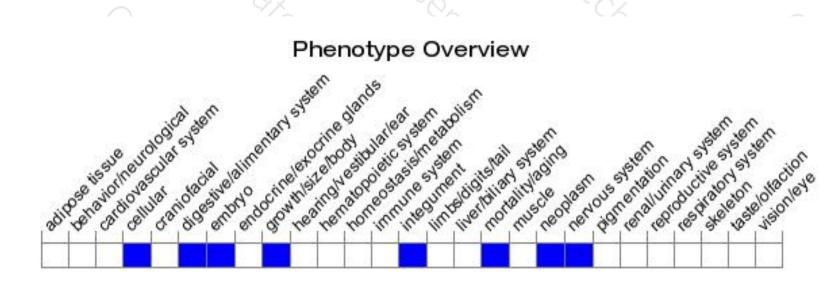
Genomic location distribution



江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

Protein domain



江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue. Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data,mice homozygous for a knock-out allele show embryonic growth retardation, failure of rostral neural tube closure, Golgi and endoplasmic reticulum stress, increased apoptosis, accumulation of intracellular lipid droplets and midgestational lethality. Aged heterozygotes develop squamous cell tumors.

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

