

Mbnl2 Cas9-KO Strategy

Designer: Daohua Xu

Reviewer: Huimin Su

Design Date: 2020-2-11

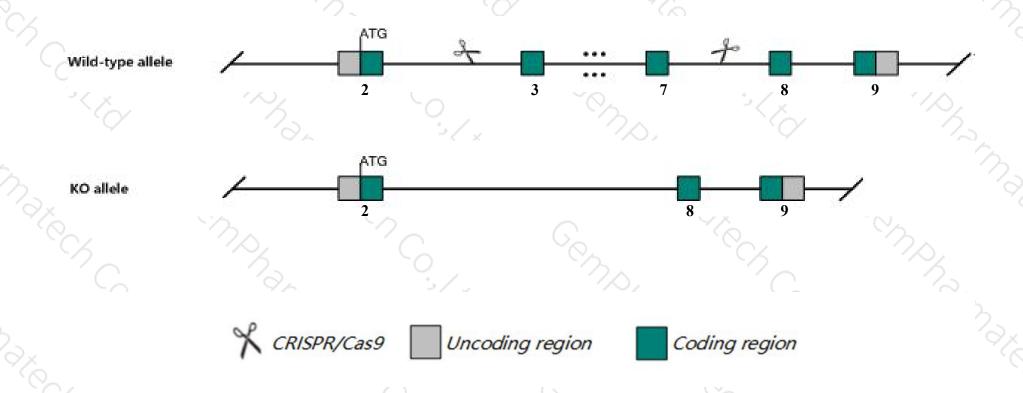
Project Overview

Project Name

Mbnl2

Project type

Cas9-KO


Strain background

C57BL/6JGpt

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Mbnl2 gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Mbnl2* gene has 10 transcripts. According to the structure of *Mbnl2* gene, exon3-exon7 of *Mbnl2-201*(ENSMUST00000088419.12) transcript is recommended as the knockout region. The region contains 838bp coding sequence Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Mbnl2* gene. The brief process is as follows: CRISPR/Cas9 system

Notice

- > According to the existing MGI data, Mice homozygous for one gene trap exhibit myotonia, lordosis and altered skeletal muscle fiber morphology.
- ➤ The KO region contains functional region of the *Gm26679* gene. Knockout the region will affect the function of *Gm26679* gene.
- > The *Mbnl2* gene is located on the Chr14. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- ➤ This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Mbnl2 muscleblind like splicing factor 2 [Mus musculus (house mouse)]

Gene ID: 105559, updated on 9-Apr-2019

Summary

☆ ?

Official Symbol Mbnl2 provided by MGI

Official Full Name muscleblind like splicing factor 2 provided by MGI

Primary source MGI:MGI:2145597

See related Ensembl: ENSMUSG00000022139

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

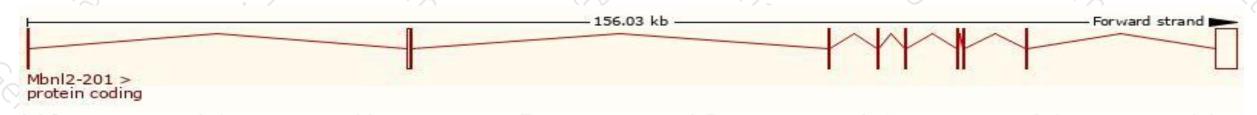
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

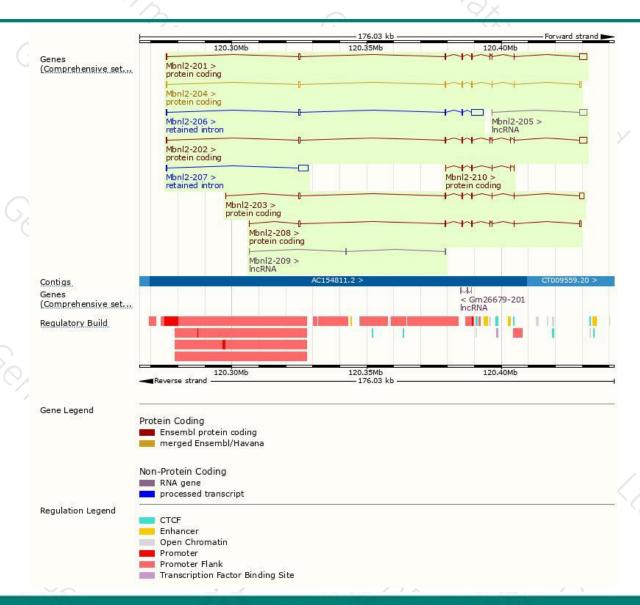
Also known as 1110002M11Rik, Al047808, Al837313, Al849185, AL118326, MBLL, R75232, mKIAA4072

Expression Ubiquitous expression in bladder adult (RPKM 30.1), cerebellum adult (RPKM 20.2) and 28 other tissuesSee more

Orthologs <u>human</u> all

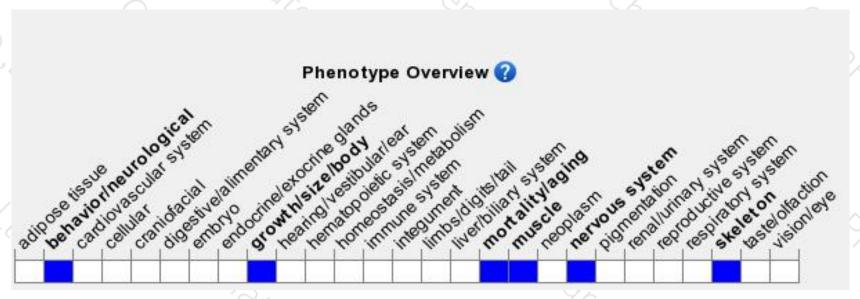

Transcript information (Ensembl)

The gene has 10 transcripts, all transcripts are shown below:


Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Mbnl2-201	ENSMUST00000088419.12	4552	<u>373aa</u>	Protein coding	CCDS49567	Q8C181	TSL:1 GENCODE basic APPRIS P4
Mbnl2-203	ENSMUST00000226800.1	3328	<u>355aa</u>	Protein coding	CCDS49568	Q8C181	GENCODE basic APPRIS ALT1
Mbnl2-204	ENSMUST00000227012.1	2390	<u>355aa</u>	Protein coding	CCDS49568	Q8C181	GENCODE basic APPRIS ALT1
Mbn12-208	ENSMUST00000227594.1	2334	<u>373aa</u>	Protein coding	CCDS49567	Q8C181	GENCODE basic APPRIS P4
Mbnl2-202	ENSMUST00000167459.2	4534	<u>385aa</u>	Protein coding	1271	A0A2K6EDM5	TSL:1 GENCODE basic APPRIS ALT1
Mbnl2-210	ENSMUST00000228115.1	758	<u>253aa</u>	Protein coding	-	A0A2I3BRX8	5' and 3' truncations in transcript evidence prevent annotation of the start and the end of the CDS. CDS 5' and 3' incomplete
Mbn12-206	ENSMUST00000227484.1	5561	No protein	Retained intron	020	-	
Mbnl2-207	ENSMUST00000227508.1	3789	No protein	Retained intron	725	2	
Mbnl2-205	ENSMUST00000227153.1	2881	No protein	IncRNA	125		
Mbnl2-209	ENSMUST00000227644.1	339	No protein	IncRNA	393	-	

The strategy is based on the design of Mbnl2-201 transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Mice homozygous for one gene trap exhibit myotonia, lordosis and altered skeletal muscle fiber morphology.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

