

Polk Cas9-KO Strategy

Designer:

Reviewer:

Design Date:

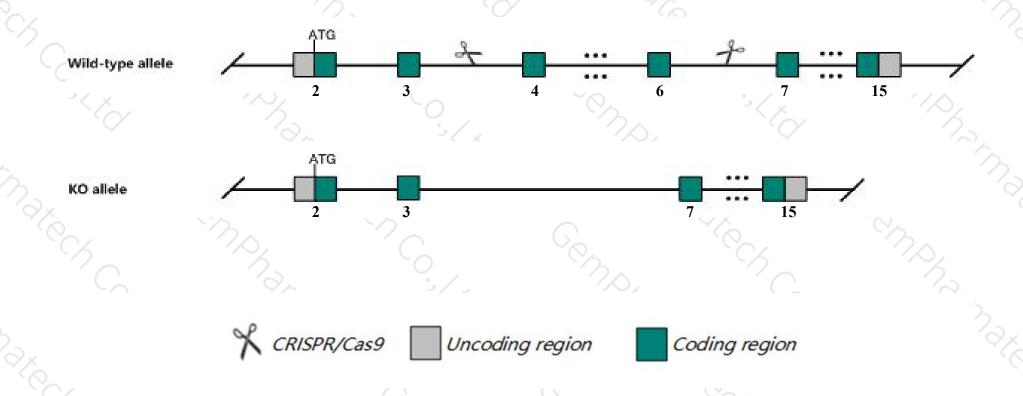
Yang Zeng

Huimin Su

2019-12-2

Project Overview

Project Name Polk


Project type Cas9-KO

Strain background C57BL/6JGpt

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Polk* gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Polk* gene has 11 transcripts. According to the structure of *Polk* gene, exon4-exon6 of *Polk-201*(ENSMUST00000022172.11) transcript is recommended as the knockout region. The region contains 439bp coding sequence.

 Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Polk* gene. The brief process is as follows: CRISPR/Cas9 system we

Notice

- ➤ According to the existing MGI data, Homozygous mutation of this gene that results in a truncated transcript results in a higher rate of spontaneous germline expanded simple tandem repeat mutations. Homozyogus null mice exhibit normal immunoglobulin gene somatic hypermutation.
- The *Polk* gene is located on the Chr13. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Polk polymerase (DNA directed), kappa [Mus musculus (house mouse)]

Gene ID: 27015, updated on 24-Oct-2019

Summary

Official Symbol Polk provided by MGI

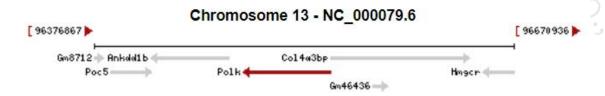
Official Full Name polymerase (DNA directed), kappa provided by MGI

Primary source MGI:MGI:1349767

See related Ensembl:ENSMUSG00000021668

Gene type protein coding
RefSeq status VALIDATED

Organism Mus musculus

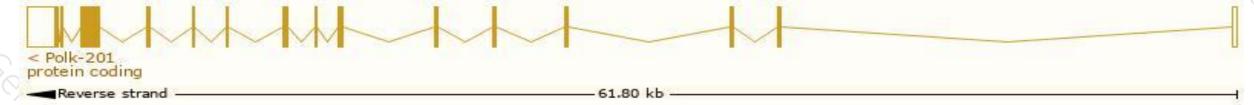

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

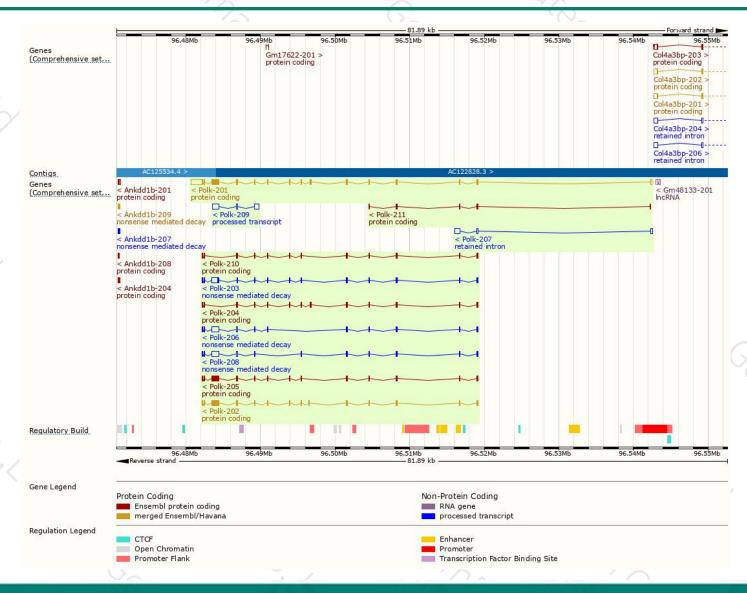
Also known as DINP: Dinb1

Expression Broad expression in bladder adult (RPKM 3.8), testis adult (RPKM 3.6) and 25 other tissues See more

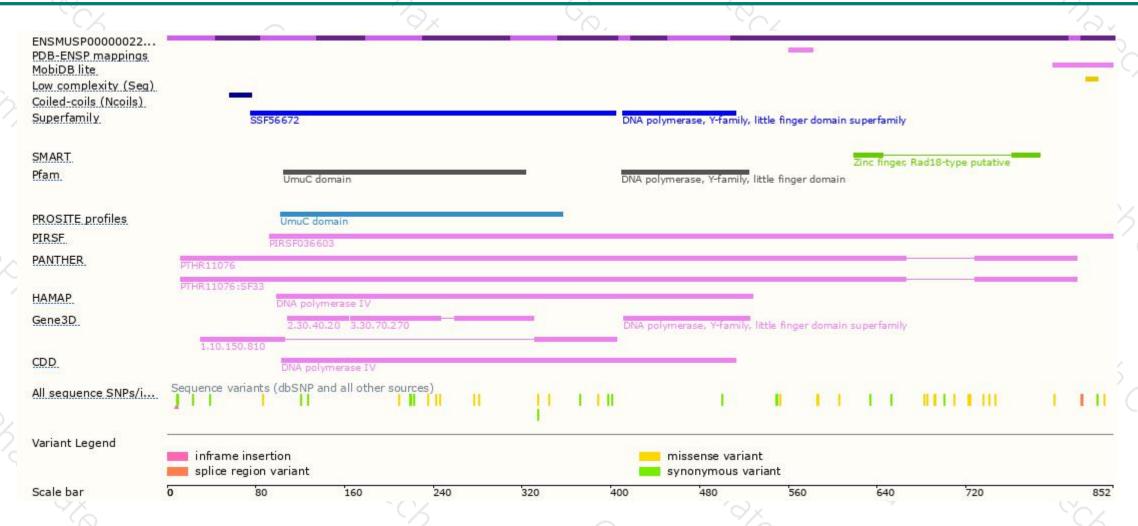
Orthologs human all

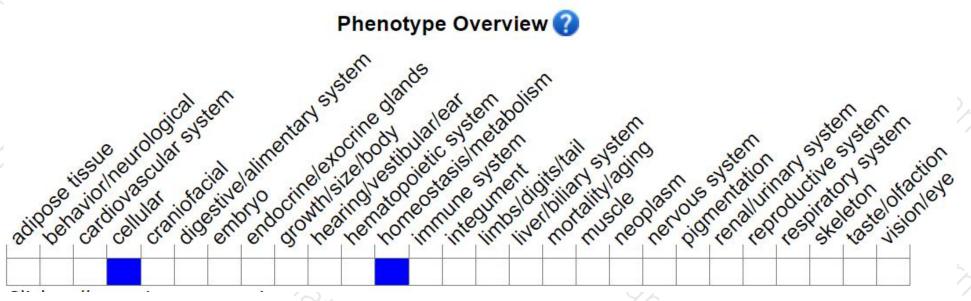

Transcript information (Ensembl)

The gene has 11 transcripts, all transcripts are shown below:


Name 🍦	Transcript ID #	bp 🌲	Protein 🍦	Translation ID 👙	Biotype	CCDS	UniProt #	Flags
Polk-201	ENSMUST00000022172.11	4225	852aa	ENSMUSP00000022172.4	Protein coding	CCDS26704₽	Q9QUG2₽	TSL:1 GENCODE basic APPRIS P2
Polk-202	ENSMUST00000091387.3	2382	<u>793aa</u>	ENSMUSP00000088950.3	Protein coding	CCDS84053₽	Q5Q9H7@	TSL:1 GENCODE basic
Polk-205	ENSMUST00000221899.1	2319	772aa	ENSMUSP00000152647.1	Protein coding	19-1	Q5Q9H6₽	TSL:1 GENCODE basic
Polk-204	ENSMUST00000221645.1	1644	<u>547aa</u>	ENSMUSP00000152178.1	Protein coding	199	A0A1Y7VIV8₽	TSL:1 GENCODE basic APPRIS ALT2
Polk-210	ENSMUST00000222389.1	1404	<u>467aa</u>	ENSMUSP00000152192.1	Protein coding	95	Q5Q9H0₽	TSL:1 GENCODE basic
Polk-211	ENSMUST00000223475.1	651	<u>169aa</u>	ENSMUSP00000152658.1	Protein coding	19-1	A0A1Y7VJV3₽	CDS 3' incomplete TSL:5
Polk-203	ENSMUST00000220977.1	2282	<u>453aa</u>	ENSMUSP00000152322.1	Nonsense mediated decay	199	<u>Q5Q9H5</u> ₽	TSL:1
Polk-208	ENSMUST00000222143.1	2119	275aa	ENSMUSP00000152468.1	Nonsense mediated decay	19-1	Q5Q9H4₽	TSL:1
Polk-206	ENSMUST00000222075.1	2027	<u>237aa</u>	ENSMUSP00000152139.1	Nonsense mediated decay	157	Q5Q9H3₽	TSL:1
Polk-207	ENSMUST00000222100.1	1089	No protein	F2	Retained intron	13-13		TSL:1
Polk-209	ENSMUST00000222268.1	1671	No protein	T2	IncRNA	10.73	la la	TSL:3

The strategy is based on the design of *Polk-201* transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Homozygous mutation of this gene that results in a truncated transcript results in a higher rate of spontaneous germline expanded simple tandem repeat mutations. Homozyogus null mice exhibit normal immunoglobulin gene somatic hypermutation.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

