

Stk38 Cas9-CKO Strategy

Designer:

Daohua Xu

Reviewer:

Huimin Su

Design Date:

2020-2-20

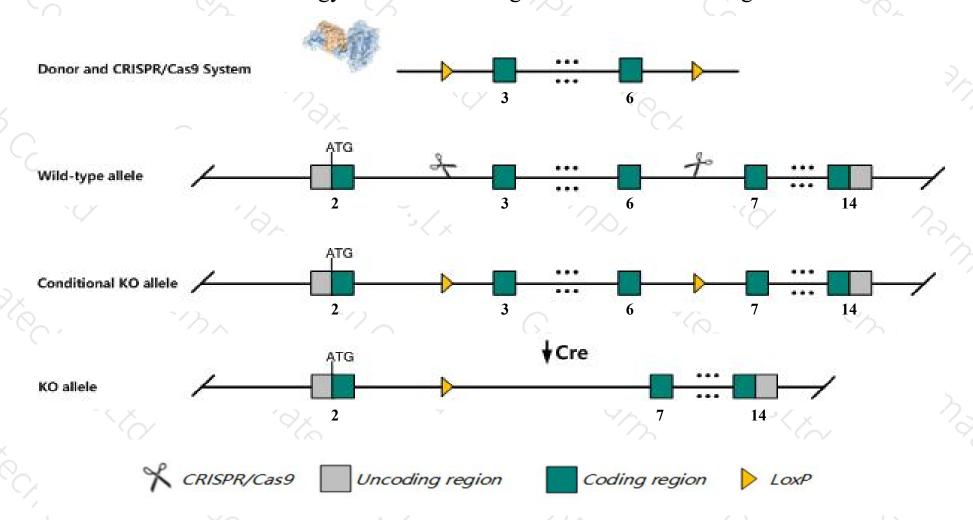
Project Overview

Project Name

Stk38

Project type

Cas9-CKO


Strain background

C57BL/6JGpt

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Stk38 gene. The schematic diagram is as follows:

Technical routes

- The *Stk38* gene has 25 transcripts. According to the structure of *Stk38* gene, exon3-exon6 of *Stk38-202* (ENSMUST00000119274.2) transcript is recommended as the knockout region. The region contains 383bp coding sequence. Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Stk38* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.
- The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- According to the existing MGI data, Mice homozygous for a knock-out allele exhibit increased susceptibility to bacterial infection and altered TLR9-activated inflammatory responses. Mice homozygous for a different knock-out allele exhibit decreased cellular susceptibility to gamma-irradiation and increased susceptibility to spontaneous and induced tumors.
- ➤ Transcript Stk38-209 and Stk38-215 may not be affected.
- The KO region contains the Gm23887 gene. Knockout the region will affect the function of Gm23887 gene.
- The *Stk38* gene is located on the Chr17. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Stk38 serine/threonine kinase 38 [Mus musculus (house mouse)]

Gene ID: 106504, updated on 31-Jan-2019

Summary

☆ ?

Official Symbol Stk38 provided by MGI

Official Full Name serine/threonine kinase 38 provided by MGI

Primary source MGI:MGI:2442572

See related Ensembl:ENSMUSG00000024006

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

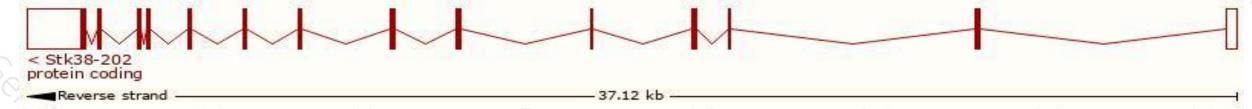
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

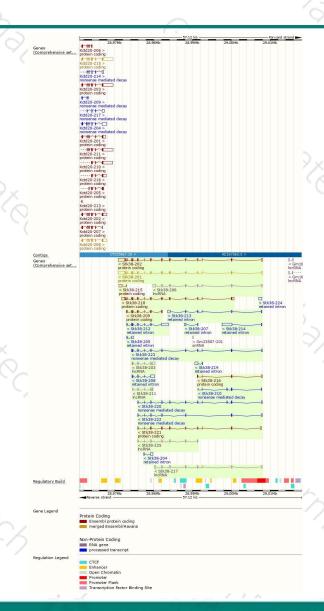
Also known as 5830476G13Rik, 9530097A09Rik, AA617404, Ndr1

Expression Ubiquitous expression in CNS E11.5 (RPKM 16.0), thymus adult (RPKM 15.1) and 28 other tissuesSee more

Orthologs human all

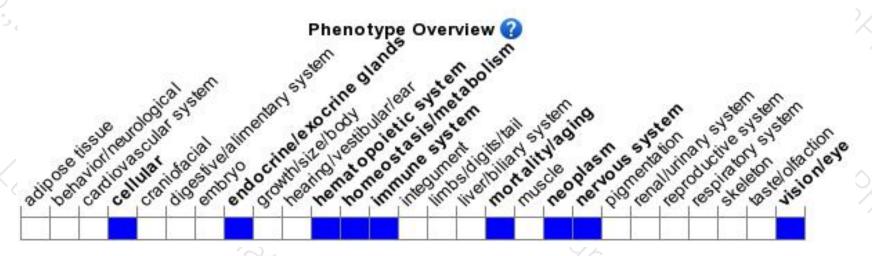

Transcript information (Ensembl)

The gene has 25 transcripts, all transcripts are shown below:


Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Stk38-202	ENSMUST00000119274.2	3354	465aa	Protein coding	CCDS28589	Q91VJ4	TSL:1 GENCODE basic APPRIS P
Stk38-201	ENSMUST00000009138.12	3351	465aa	Protein coding	CCDS28589	Q91VJ4	TSL:1 GENCODE basic APPRIS P
Stk38-218	ENSMUST00000232836.1	2778	465aa	Protein coding	CCDS28589	Q91VJ4	GENCODE basic APPRIS P1
Stk38-221	ENSMUST00000233441.1	1246	307aa	Protein coding		A0A3B2WD34	CDS 3' incomplete
Stk38-215	ENSMUST00000156732.2	880	14aa	Protein coding		A0A3B2W7E4	CDS 5' incomplete TSL:3
Stk38-209	ENSMUST00000141431.7	859	261aa	Protein coding		A0A3B2W7L2	CDS 5' incomplete TSL:3
Stk38-216	ENSMUST00000232723.1	627	117aa	Protein coding		A0A3B2WAZ4	GENCODE basic
Stk38-223	ENSMUST00000233606.1	1276	132aa	Nonsense mediated decay	-	A0A3B2W7T8	
Stk38-220	ENSMUST00000233329.1	1268	61aa	Nonsense mediated decay		A0A3B2W7M3	
Stk38-222	ENSMUST00000233510.1	856	58aa	Nonsense mediated decay	-	A0A3B2WD06	
Stk38-210	ENSMUST00000142366.2	335	61aa	Nonsense mediated decay		A0A3B2W7M3	TSL:1
Stk38-214	ENSMUST00000145298.1	2767	No protein	Retained intron		-	TSL:1
Stk38-212	ENSMUST00000144299.8	2313	No protein	Retained intron			TSL:2
Stk38-208	ENSMUST00000140355.8	1382	No protein	Retained intron			TSL:2
Stk38-213	ENSMUST00000144516.8	1186	No protein	Retained intron			TSL:3
Stk38-219	ENSMUST00000233093.1	897	No protein	Retained intron			
Stk38-224	ENSMUST00000233723.1	820	No protein	Retained intron			
Stk38-204	ENSMUST00000126619.1	748	No protein	Retained intron			TSL:3
Stk38-205	ENSMUST00000126671.1	486	No protein	Retained intron	0	-	TSL:3
Stk38-207	ENSMUST00000129094.2	460	No protein	Retained intron			TSL:3
Stk38-206	ENSMUST00000126893.7	1663	No protein	IncRNA	-		TSL:1
Stk38-217	ENSMUST00000232724.1	1298	No protein	IncRNA			
Stk38-203	ENSMUST00000125070.8	1052	No protein	IncRNA		-	TSL:5
Stk38-225	ENSMUST00000233864.1	694	No protein	IncRNA			
Stk38-211	ENSMUST00000142923.1	529	No protein	IncRNA			TSL:2

The strategy is based on the design of Stk38-202 transcript, The transcription is shown below

Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Mice homozygous for a knock-out allele exhibit increased susceptibility to bacterial infection and altered TLR9-activated inflammatory responses. Mice homozygous for a different knock-out allele exhibit decreased cellular susceptibility to gamma-irradiation and increased susceptibility to spontaneous and induced tumors

If you have any questions, you are welcome to inquire. Tel: 400-9660890

