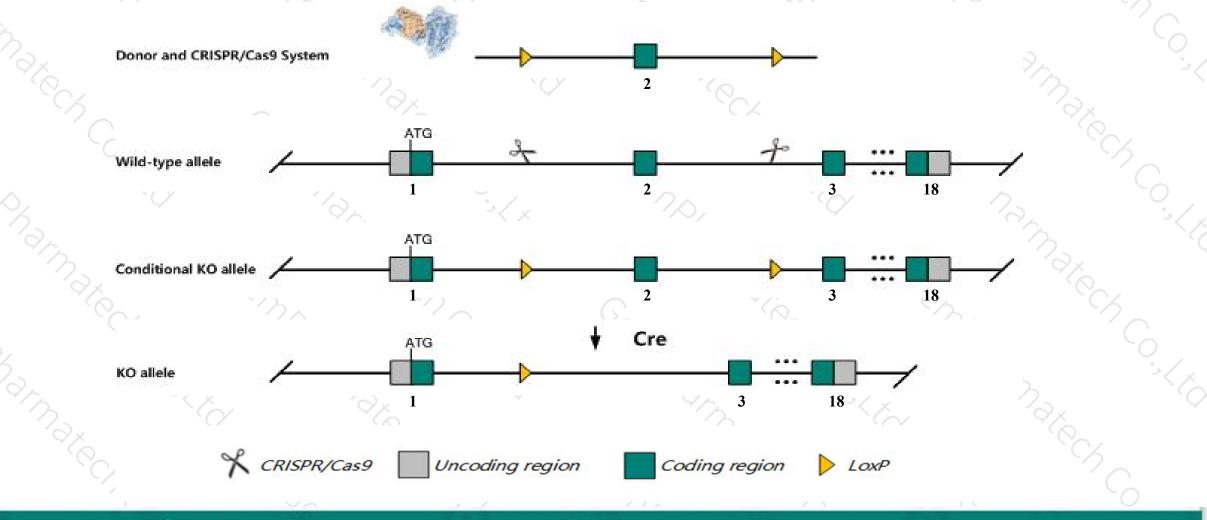


Camk2d Cas9-CKO Strategy

Designer:Xueting Zhang Reviewer:Yanhua Shen Date:2019-11-13

Project Overview



Conditional Knockout strategy

400-9660890

This model will use CRISPR/Cas9 technology to edit the *Camk2d* gene. The schematic diagram is as follows:

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

The Camk2d gene has 28 transcripts. According to the structure of Camk2d gene, exon2 of Camk2d-226 (ENSMUST00000199300.4) transcript is recommended as the knockout region. The region contains 95bp coding sequence. Knock out the region will result in disruption of protein function.

In this project we use CRISPR/Cas9 technology to modify *Camk2d* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice.Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.

The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

- According to the existing MGI data, Mice homozygous for a knock-out allele exhibit reduced response to heart induced stress. Mice homozygous for an allele that produces an oxidant-resistant product exhibit reduced response to myocardial infarction in a diabetic model.
- ► *Gm43011* gene will be destroyed in this strategy.
- ➤ Transcript Camk2d-201&211&214&217&218&220&222&223&224&225&227 may not be affected.
- The Camk2d gene is located on the Chr3. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Camk2d calcium/calmodulin-dependent protein kinase II, delta [Mus musculus (house mouse)] Gene ID: 108058, updated on 10-Oct-2019 ☆ ? Summary Official Symbol Camk2d provided by MGI Official Full Name calcium/calmodulin-dependent protein kinase II, delta provided by MGI Primary source MGI:MGI:1341265 See related Ensembl:ENSMUSG0000053819 Gene type protein coding RefSeg status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as CaMK II; [d]-CaMKII; 2810011D23Rik; 8030469K03Rik Expression Ubiquitous expression in bladder adult (RPKM 17.7), adrenal adult (RPKM 15.0) and 24 other tissues See more Orthologs human all Genomic context ~ ? Location: 3; 3 G1 See Camk2d in Genome Data Viewer Exon count: 26

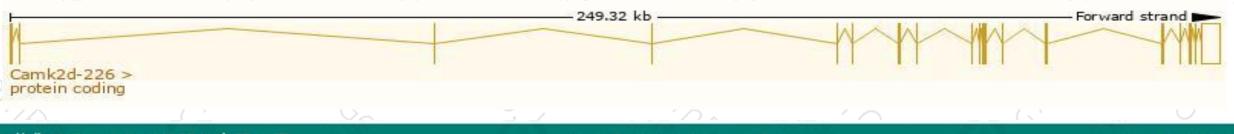
Annotation release Status		Assembly	Location			
108	current	GRCm38.p6 (GCF_000001635.26)	3	NC_000069.6 (126595487126846326)		
Build 37.2	previous assembly	MGSCv37 (GCF_000001635.18)	3	NC_000069.5 (126299891126547972)		

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

400-9660890

Transcript information (Ensembl)


400-9660890

The gene has 28 transcripts, all transcripts are shown below:

Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags		
Camk2d-226	ENSMUST00000199300.4	5524	<u>499aa</u>	Protein coding	CCDS17823	O6PHZ2	TSL:1 GENCODE basic APPRIS P3		
Camk2d-228	ENSMUST00000200171.4	5396	<u>533aa</u>	Protein coding	CCDS84670	A0A0G2JGS4	TSL:5 GENCODE basic APPRIS ALT		
Camk2d-216	ENSMUST00000163226.7	4204	<u>361aa</u>	Protein coding	CCDS80017	O8CCM0	TSL:1 GENCODE basic		
Camk2d-206	ENSMUST00000106402.7	4180	<u>512aa</u>	Protein coding	CCDS80015	Q6PHZ2	TSL:1 GENCODE basic		
Camk2d-203	ENSMUST00000106399.7	4169	<u>512aa</u>	Protein coding	CCDS38624	E9Q1W0	TSL:1 GENCODE basic		
Camk2d-202	ENSMUST0000066466.12	4075	<u>492aa</u>	Protein coding	CCDS80016	Q6PHZ2	TSL1 GENCODE basic		
Camk2d-204	ENSMUST00000106400.8	2722	<u>478aa</u>	Protein coding	CCDS51065	Q6PHZ2	TSL:1 GENCODE basic		
Camk2d-221	ENSMUST00000171289.7	2217	<u>533aa</u>	Protein coding	CCDS84671	E9Q1T1	TSL:5 GENCODE basic APPRIS ALT		
Camk2d-205	ENSMUST00000106401.7	3059	<u>488aa</u>	Protein coding	-	E9Q1V9	TSL:5 GENCODE basic		
Camk2d-201	ENSMUST0000066452.13	896	<u>160aa</u>	Protein coding		E9PXV3	CDS 5' incomplete TSL:5		
Camk2d-220	ENSMUST00000170149.1	640	<u>169aa</u>	Protein coding		F6RWZ9	CDS 5' incomplete TSL:3		
Camk2d-213	ENSMUST00000145454.7	3178	<u>142aa</u>	Nonsense mediated decay	1.1	E9QAJ4	TSL:2		
Camk2d-210	ENSMUST00000134466.7	2708	<u>147aa</u>	Nonsense mediated decay		D6RDQ8	TSL:2		
Camk2d-207	ENSMUST00000129293.7	3479	No protein	Retained intron			TSL:1		
Camk2d-211	ENSMUST00000134987.2	3114	No protein	Retained intron	-	20	TSL:1		
Camk2d-225	ENSMUST00000198637.1	3088	No protein	Retained intron		10	TSLINA		
Camk2d-227	ENSMUST00000200010.1	2369	No protein	Retained intron			TSLINA		
Camk2d-215	ENSMUST00000149311.7	2328	No protein	Retained intron			TSL:2		
Camk2d-219	ENSMUST00000169051.7	1960	No protein	Retained intron		-	TSL:2		
Camk2d-224	ENSMUST00000198487.4	1844	No protein	Retained intron	1.1		TSL:5		
Camk2d-208	ENSMUST00000131156.7	992	No protein	Retained intron			TSL:2		
Camk2d-214	ENSMUST00000147043.5	746	No protein	Retained intron			TSL:2		
Camk2d-223	ENSMUST00000197660.4	744	No protein	Retained intron		20	TSL:2		
Camk2d-217	ENSMUST00000167417.4	618	No protein	Retained intron	-		TSL:5		
Camk2d-218	ENSMUST00000167985.7	591	No protein	Retained intron		-	TSL:5		
Camk2d-209	ENSMUST00000131869.7	2993	No protein	IncRNA		-	TSL:1		
Camk2d-222	ENSMUST00000171950.7	734	No protein	IncRNA	-	-	TSL:5		
Camk2d-212	ENSMUST00000143383.7	206	No protein	IncRNA		22	TSL:5		

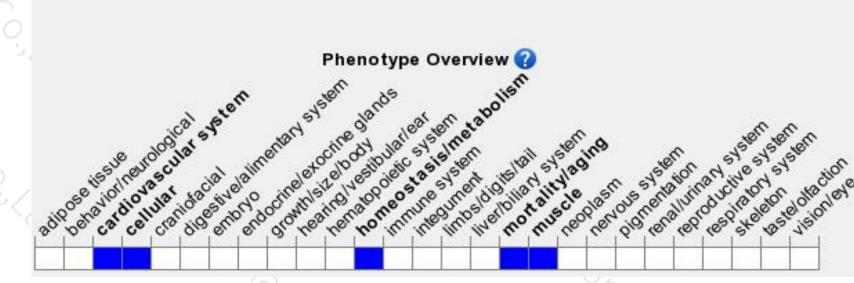
江苏集萃药康生物科技股份有限公司

The strategy is based on the design of Camk2d-226 transcript, The transcription is shown below

Genomic location distribution

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.


Protein domain

	11 0000 0000 000 000 0000000	synony	mous var	iant 120	180	240	300		860	420		
	Variant Legend	8	-					1.1	1	1111 1		
0	All sequence SNPs/i		ariant <mark>s</mark> (db	SNP and all o	ther sources)	147						, series de la companya d
$\gamma_{\mathcal{S}}$	CDD	cd14086										Co.
	Gene3D	PTHR24347 3.30.200.20		1.10.510,10				3,10,450.	50			
	PIRSF PANTHER	PIRSF00065 PTHR24347 :S		Senn	e/threonine-prot	ein kinase, activ	e site					3
Ceno	PROSITE profiles PROSITE patterns	2	nase domain linase, ATP	binding site	e/threonine-prot	ein kinnen artiu						× Co
2	SMART. Pfam.		nase domain nase domain					Calc	um/calmo	dulin-dependent	protein kii	
	ENSMUSP00000143 SIFTS import Superfamily	Protein kina	ase-like don	nain superfamil	Ŷ		1	NTF2-	ike domai	n superfamily	57	3 K

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue. Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Mice homozygous for a knock-out allele exhibit reduced response to heart induced stress. Mice homozygous for an allele that produces an oxidant-resistant product exhibit reduced response to myocardial infarction in a diabetic model.

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

400-9660890

If you have any questions, you are welcome to inquire. Tel: 400-9660890

