

Irf3 Cas9-KO Strategy

Designer:

Yanhua Shen

Reviewer:

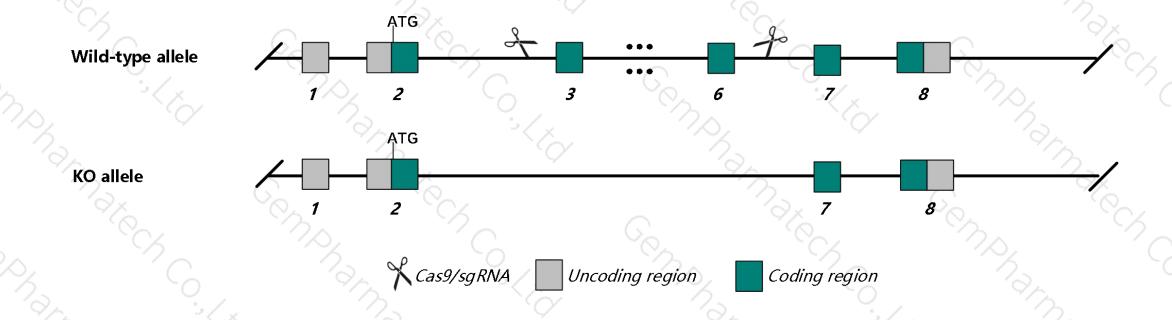
Jia Yu

Design Date:

2019-12-02

Project Overview

Project Name Irf3


Project type Cas9-KO

Strain background C57BL/6JGpt

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Irf3* gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Irf3* gene has 13 transcripts. According to the structure of *Irf3* gene, exon3-6 of *Irf3-201* (ENSMUST00000003284.15) transcript is recommended as the knockout region. The region contains 796bp of coding sequence. Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Irf3* gene. The brief process is as follows: CRISPR/Cas9 system w

Notice

- > According to the existing MGI data, homozygous null mice are more susceptible to viral infection and exhibit lower serum interferon levels in response to viral infection.
- Transcripts 210,212 may not be affected, and the effect on transcripts 203,204,206,211 are unknown.
- ➤ The knockout region is near to the N-terminal of *Bcl2l12* gene, this strategy may influence the regulatory function of the N-terminal of *Bcl2l12* gene.
- The *Irf3* gene is located on the Chr7. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Irf3 interferon regulatory factor 3 [Mus musculus (house mouse)]

Gene ID: 54131, updated on 26-Nov-2019

Summary

众 ?

Official Symbol Irf3 provided by MGI

Official Full Name interferon regulatory factor 3 provided by MGI

Primary source MGI:MGI:1859179

See related Ensembl: ENSMUSG00000003184

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;

Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus

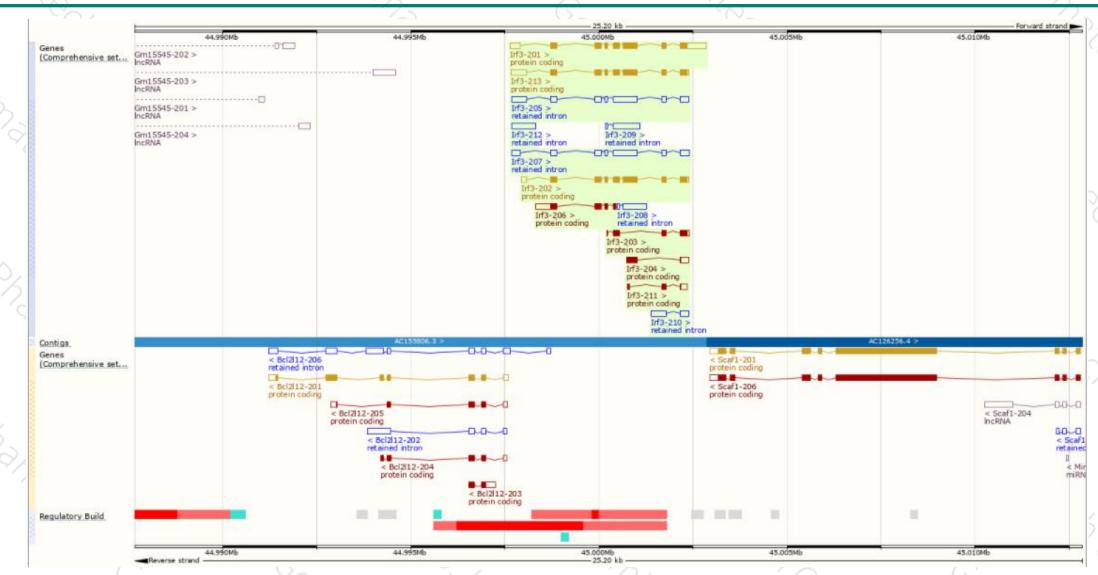
Also known as IRF-3; C920001K05Rik

Expression Ubiquitous expression in thymus adult (RPKM 26.3), spleen adult (RPKM 21.3) and 28 other tissues See more

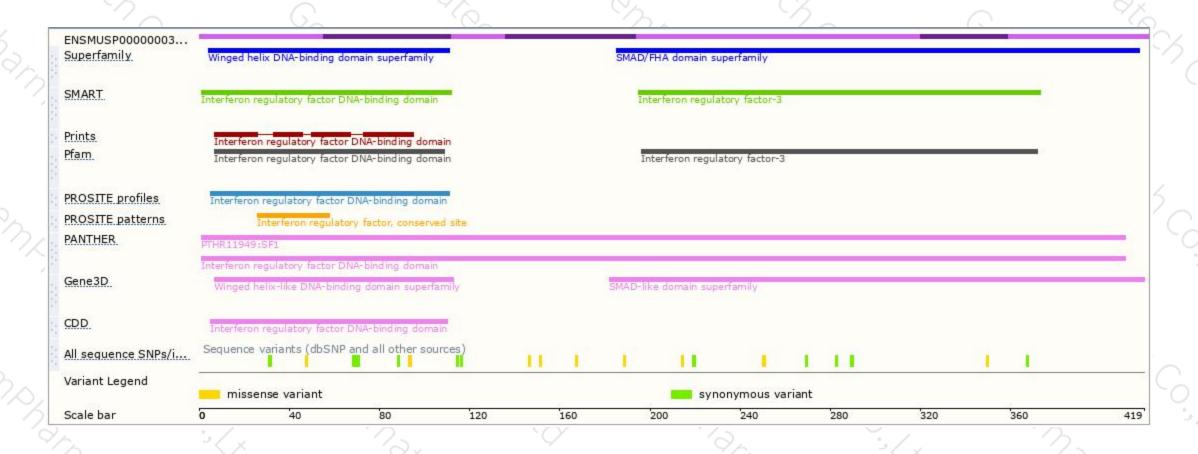
Orthologs human all

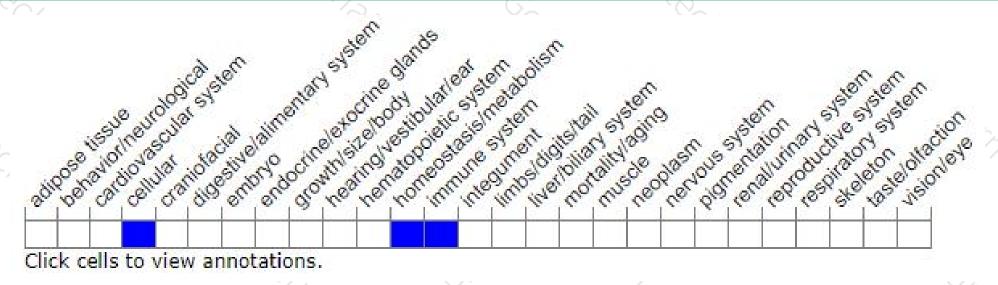

Transcript information (Ensembl)

The gene has 13 transcripts, all transcripts are shown below:


Name 🍦	Transcript ID	bp 🛊	Protein 🍦	Biotype	CCDS	UniProt 🍦	Flags
Irf3-201	ENSMUST00000003284.15	2031	419aa	Protein coding	CCDS21224 ₺	P70671₽ Q3U9K6₽	TSL:1 GENCODE basic APPRIS P1
Irf3-213	ENSMUST00000209066.1	1712	419aa	Protein coding	CCDS21224₺	<u>P70671</u> ₽ Q3U9K6₽	TSL:1 GENCODE basic APPRIS P1
Irf3-202	ENSMUST00000107834.1	1429	419aa	Protein coding	CCDS21224₺	<u>P70671</u> ₽ Q3U9K6₽	TSL:1 GENCODE basic APPRIS P1
Irf3-206	ENSMUST00000207521.1	869	<u>160aa</u>	Protein coding	97	A0A140LHE6必	CDS 3' incomplete TSL:5
Irf3-203	ENSMUST00000207128.1	537	<u>161aa</u>	Protein coding	9-	A0A140LJE8@	CDS 5' incomplete TSL:5
Irf3-204	ENSMUST00000207129.1	517	<u>103aa</u>	Protein coding	9-	A0A140LJD9@	CDS 5' incomplete TSL:2
Irf3-211	ENSMUST00000208958.1	369	68aa	Protein coding	÷	A0A140LI96 ₽	CDS 5' incomplete TSL:3
Irf3-205	ENSMUST00000207476.1	1797	No protein	Retained intron	>	l#	TSL:2
Irf3-207	ENSMUST00000207555.1	1641	No protein	Retained intron	97	i s	TSL:2
Irf3-209	ENSMUST00000208767.1	774	No protein	Retained intron	je .	l a	TSL:3
Irf3-208	ENSMUST00000208143.1	659	No protein	Retained intron	97		TSL:2
Irf3-212	ENSMUST00000209006.1	635	No protein	Retained intron	95		TSL:NA
Irf3-210	ENSMUST00000208906.1	629	No protein	Retained intron	22	15	TSL:2

The strategy is based on the design of *Irf3-201* transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, homozygous null mice are more susceptible to viral infection and exhibit lower serum interferon levels in response to viral infection.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

