

Capn3 Cas9-CKO Strategy

Daohua Xu **Designer: Reviewer:**

Huimin Su

Design Date:

2019-8-29

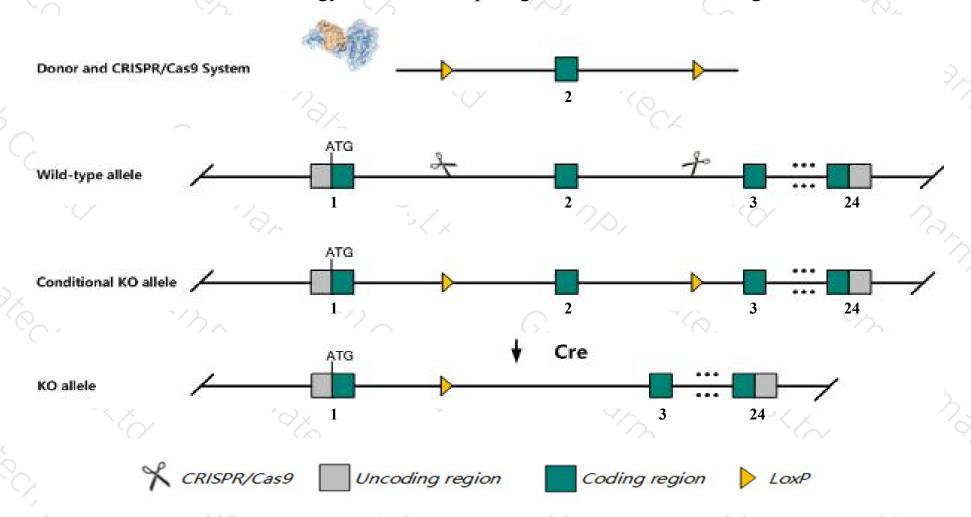
Project Overview

Project Name

Capn3

Project type

Cas9-CKO


Strain background

C57BL/6JGpt

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Capn3 gene. The schematic diagram is as follows:

Technical routes

- The *Capn3* gene has 13 transcripts. According to the structure of *Capn3* gene, exon2 of *Capn3-202*(ENSMUST00000028749.13) transcript is recommended as the knockout region. The region contains 70bp coding sequence.

 Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Capn3* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.
- The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- ➤ According to the existing MGI data, Homozygous mutation of this gene results in muscle dystrophy. The psoas, soleus, and deltoid muscles are the most severely affected. The mutant allele appears to be preferentially transmitted resulting in ratio distortion.
- > The Capn3 gene is located on the Chr2. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Capn3 calpain 3 [Mus musculus (house mouse)]

Gene ID: 12335, updated on 19-Mar-2019

Summary

☆ ?

Official Symbol Capn3 provided by MGI
Official Full Name calpain 3 provided by MGI

Primary source MGI:MGI:107437

See related Ensembl:ENSMUSG00000079110

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

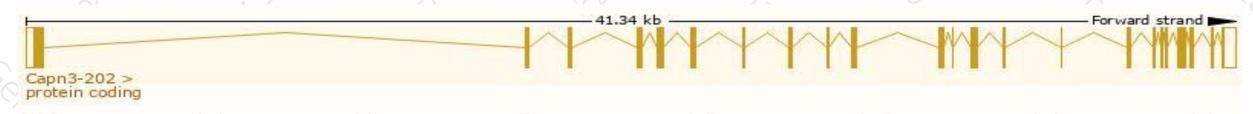
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

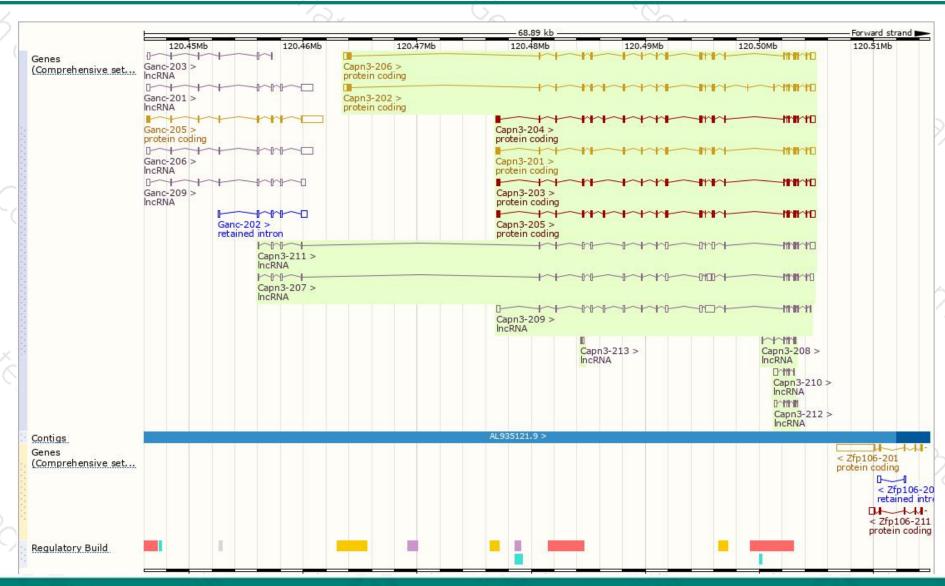
Also known as Al323605, Capa-3, Capa3, Lp82, p94

Expression Biased expression in thymus adult (RPKM 10.1), genital fat pad adult (RPKM 5.2) and 12 other tissuesSee more

Orthologs human all

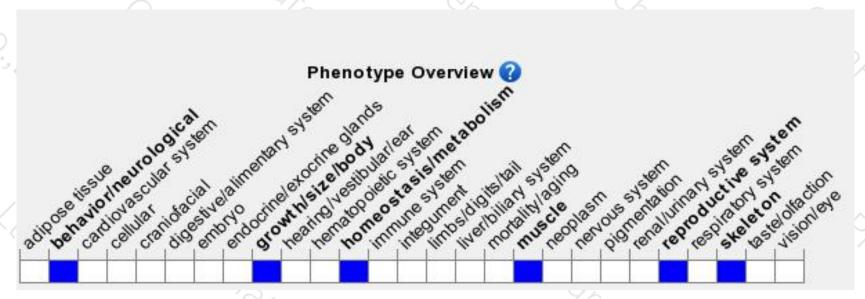

Transcript information (Ensembl)

The gene has 13 transcripts, all transcripts are shown below:


flori, O	*** /* *** *** *** *** *** *** *** ***						
Name 🍦	Transcript ID	bp 🌲	Protein	Biotype	CCDS 🍦	UniProt	Flags
Capn3-202	ENSMUST00000028749.13	3174	821aa	Protein coding	CCDS16620 ₪	<u>Q64691</u> ₽	TSL:1 GENCODE basic APPRIS P3
Capn3-206	ENSMUST00000110721.7	2898	<u>729aa</u>	Protein coding	CCDS50679₽	Q64691@	TSL:1 GENCODE basic APPRIS ALT1
Capn3-201	ENSMUST00000028748.12	2606	709aa	Protein coding	CCDS50680 &	Q0VGP9₽	TSL:1 GENCODE basic
Capn3-205	ENSMUST00000110719.2	2778	785aa	Protein coding	-	A2AVV6₽	TSL:5 GENCODE basic
Capn3-204	ENSMUST00000110716.7	2752	<u>757aa</u>	Protein coding	2	A2AVV7₺	TSL:5 GENCODE basic
Capn3-203	ENSMUST00000090028.11	2640	<u>737aa</u>	Protein coding	2	A2AVV5₽	TSL:5 GENCODE basic
Capn3-209	ENSMUST00000139336.7	2912	No protein	IncRNA	5	1374	TSL:5
Capn3-207	ENSMUST00000124129.7	2894	No protein	IncRNA	35		TSL:2
Capn3-211	ENSMUST00000145993.7	2681	No protein	IncRNA		1-2	TSL:2
Capn3-210	ENSMUST00000141181.7	671	No protein	IncRNA	9-	-	TSL:3
Capn3-212	ENSMUST00000151342.1	599	No protein	IncRNA	-	-	TSL:2
Capn3-208	ENSMUST00000125238.7	547	No protein	IncRNA	2		TSL:3
Capn3-213	ENSMUST00000151924.1	191	No protein	IncRNA	2		TSL:5

The strategy is based on the design of Capn3-202 transcript, The transcription is shown below

Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Homozygous mutation of this gene results in muscle dystrophy. The psoas, soleus, and deltoid muscles are the most severely affected. The mutant allele appears to be preferentially transmitted resulting in ratio distortion.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

