Fads2 Cas9-CKO Strategy

Designer:
Reviewer:
Design Date:
Huan Wang
Huan Fan
2020-5-26

Project Overview

Project Name
 Fads2

Project type

Strain background

C57BL／6JGpt

Conditional Knockout strategy

This model will use CRISPR／Cas9 technology to edit the Fads2 gene．The schematic diagram is as follows：

Technical routes

＞The Fads2 gene has 3 transcripts．According to the structure of Fads2 gene，exon2－exon10 of Fads2－201
（ENSMUST00000025567．8）transcript is recommended as the knockout region．The region contains 950bp coding sequence． Knock out the region will result in disruption of protein function．
$>$ In this project we use CRISPR／Cas9 technology to modify Fads2 gene．The brief process is as follows：gRNA was transcribed in vitro，donor was constructed．Cas9，gRNA and Donor were microinjected into the fertilized eggs of C57BL／6JGpt mice．Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing．A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL／6JGpt mice．
$>$ The flox mice will be knocked out after mating with mice expressing Cre recombinase，resulting in the loss of function of the target gene in specific tissues and cell types．

Notice

$>$ According to the existing MGI data，mice homozygous for a null allele display absence of long－chain polyunsaturated fatty acids，infertility，arrest of spermiogenesis and folliculogenesis，and impaired platelet function．
$>$ The Fads2 gene is located on the Chr19．If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring，please avoid the two genes on the same chromosome．
$>$ This strategy is designed based on genetic information in existing databases．Due to the complexity of biological processes， all risk of loxp insertion on gene transcription，RNA splicing and protein translation cannot be predicted at existing technological level．

Gene information（NCBI）

Fads2 fatty acid desaturase $\mathbf{2}$［Mus musculus（house mouse）］

Gene ID：56473，updated on 13－Mar－2020

```
Summary 呾?
    Official Symbol Fads2 provided by MGI
Official Full Name fatty acid desaturase 2 provided byMGI
    Primary source MGI:MGI:1930079
        See related Ensembl:ENSMUSG00000024665
        Gene type protein coding
    RefSeq status VALIDATED
            Organism Mus musculus
            Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
                        Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus
    Also known as 2900042M13Rik, Fads2a, Fadsd2
    Expression Broad expression in adrenal adult (RPKM 555.1), liver adult (RPKM 281.5) and 21 other tissuesSee more
        Orthologs human all
```


Transcript information（Ensembl）

集萃药康
GemPharmatech

The gene has 3 transcripts，all transcripts are shown below：

Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Fads2－201	ENSMUST00000025567．8	3150	$\underline{444 a \mathrm{a}}$	Protein coding	$\underline{\text { CCDS29571 }}$	$\underline{\text { Q9Z0R9 }}$	TSL：1 GENCODE basic APPRIS P1
Fads2－202	ENSMUST00000235937．1	355	$\underline{118 a \mathrm{a}}$	Protein coding	-	$\underline{\text { AOA494BBD1 }}$	CDS 5＇and 3＇incomplete
Fads2－203	ENSMUST00000238023．1	879	No protein	Processed transcript	-	-	

The strategy is based on the design of Fads2－201 transcript，the transcription is shown below：

Genomic location distribution

Protein domain

Mouse phenotype description（MGI）

Phenotypes affected by the gene are marked in blue．Data quoted from MGI database（http：／／www．informatics．jax．org／）．

According to the existing MGI data，mice homozygous for a null allele display absence of long－chain polyunsaturated fatty acids，infertility，arrest of spermiogenesis and folliculogenesis，and impaired platelet function．

If you have any questions，you are welcome to inquire． Tel：400－9660890

