

Cd86 Cas9-KO Strategy

Designer: Jinling Wang

Reviewer: Shilei Zhu

Date: 2019/11/26

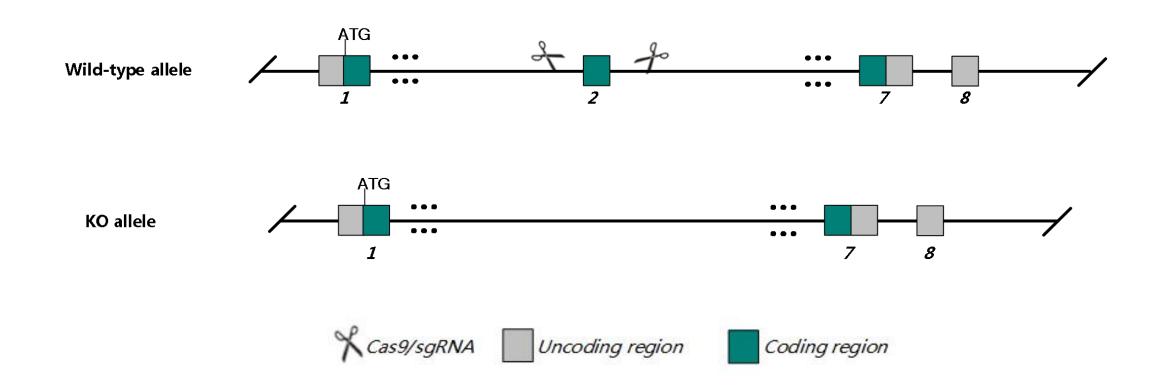
Project Overview

Project Name

Project type

Strain background

Cas9-KO


Cd86

C57BL/6JGpt

Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Cd86* gene. The schematic diagram is as follows:

Technical routes

- ➤ The *Cd86* gene has 4 transcripts. According to the structure of *Cd86* gene, exon2 of *Cd86-201*(ENSMUST00000089620.10) transcript is recommended as the knockout region. The region contains 50bp coding sequence.

 Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Cd86* gene. The brief process is as follows: CRISPR/Cas9 system

Notice

- ➤ According to the existing MGI data, Homozygous null mice on an NOD background display a phenotype similar to human Guillain-Barre Syndrome, exhibiting severe peripheral nervous system inflammation, sciatic nerve demyelination, elevated auto-antibodies to myelin protein zero, hindlimb paralysis, and weak forelimb grip.
- > The *Cd86* gene is located on the Chr16. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of the gene knockout on gene transcription, RNA splicing and protein translation cannot be predicted at the existing technology level.

Gene information (NCBI)

Cd86 CD86 antigen [Mus musculus (house mouse)]

Gene ID: 12524, updated on 12-Feb-2019

Summary

☆ ?

Official Symbol Cd86 provided by MGI

Official Full Name CD86 antigen provided by MGI

Primary source MGI:MGI:101773

See related Ensembl:ENSMUSG00000022901

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

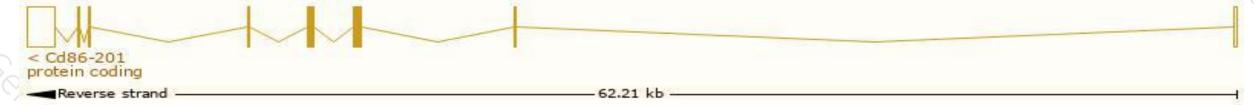
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

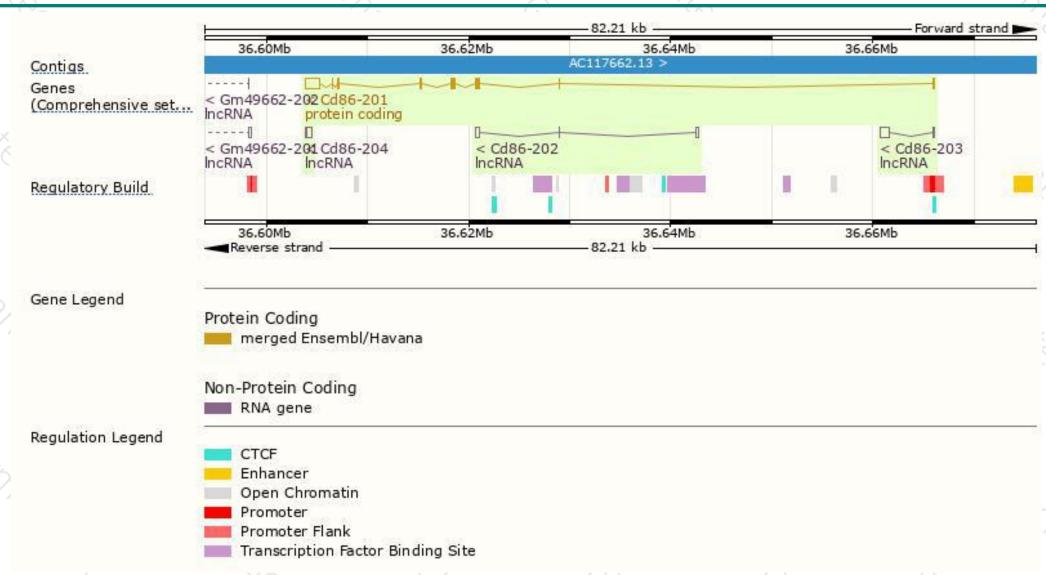
Also known as B7, B7-2, B7.2, B70, CLS1, Cd28l2, ETC-1, Ly-58, Ly58, MB7, MB7-2, TS/A-2

Expression Broad expression in spleen adult (RPKM 3.3), liver E18 (RPKM 2.8) and 21 other tissuesSee more

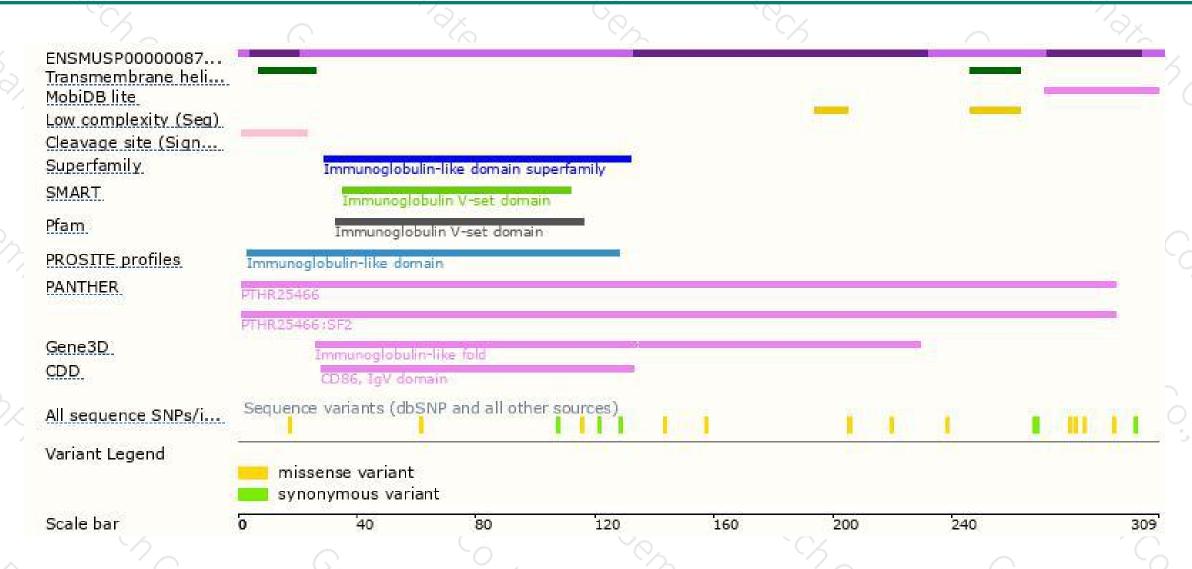
Orthologs <u>human</u> all

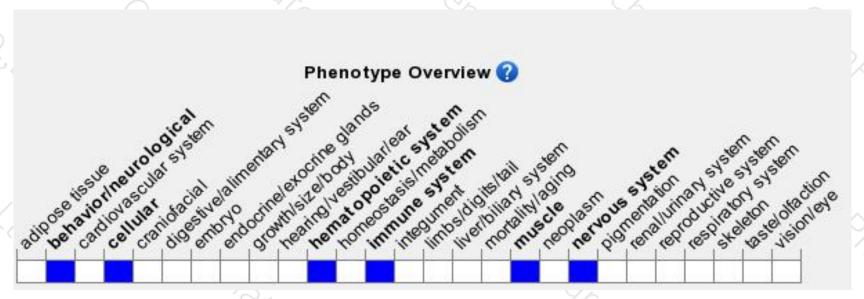

Transcript information (Ensembl)

The gene has 4 transcripts, all transcripts are shown below:


Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Cd86-201	ENSMUST00000089620.10	2539	309aa	Protein coding	CCDS28155	P42082 Q549Q9	TSL:1 GENCODE basic APPRIS P1
Cd86-203	ENSMUST00000145506.1	975	No protein	IncRNA	584		TSL:1
Cd86-202	ENSMUST00000135280.1	654	No protein	IncRNA	(s 4)	-	TSL:3
Cd86-204	ENSMUST00000154485.1	548	No protein	IncRNA	14.5	22	TSL:3

The strategy is based on the design of *Cd86-201* transcript, The transcription is shown below


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Homozygous null mice on an NOD background display a phenotype similar to human Guillain-Barre Syndrome, exhibiting severe peripheral nervous system inflammation, sciatic nerve demyelination, elevated auto-antibodies to myelin protein zero, hindlimb paralysis, and weak forelimb grip.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

