

Spg7 Cas9-CKO Strategy

Designer:

Jinlong Zhao

Reviewer:

Shilei Zhu

Design Date:

2018-12-10

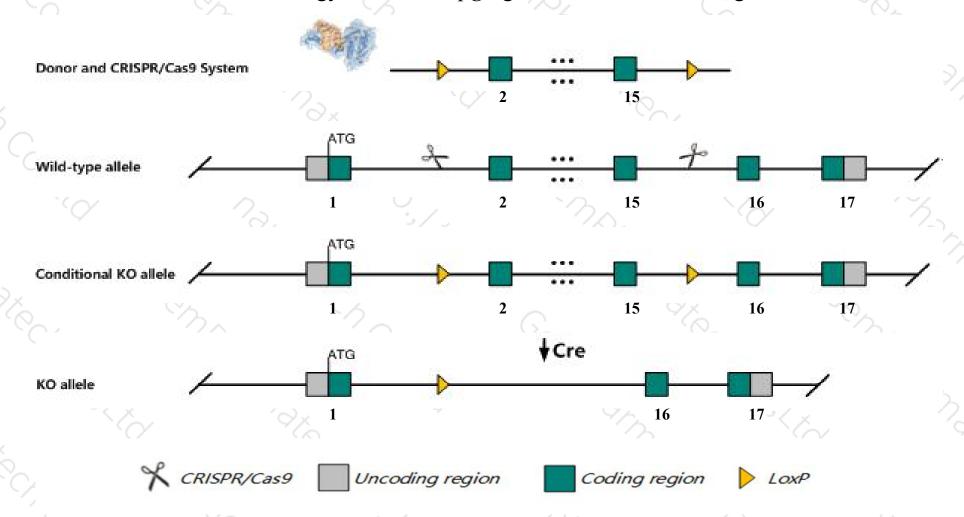
Project Overview

Project Name

Spg7

Project type

Cas9-CKO


Strain background

C57BL/6JGpt

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the *Spg7* gene. The schematic diagram is as follows:

Technical routes

- The *Spg7* gene has 13 transcripts. According to the structure of *Spg7* gene, exon2-exon15 of *Spg7-209* (ENSMUST00000149248.8) transcript is recommended as the knockout region. The region contains most of the coding sequence. Knock out the region will result in disruption of protein function.
- ➤ In this project we use CRISPR/Cas9 technology to modify *Spg7* gene. The brief process is as follows:CRISPR/Cas9 system and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice. Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.
- The flox mice will be knocked out after mating with mice expressing Cre recombinase, resulting in the loss of function of the target gene in specific tissues and cell types.

Notice

- ➤ According to the existing MGI data, homozygous null mice exhibit impaired motor skills, putativley associated with axonal degeneration in the central and peripheral nervous systems.
- ➤ The KO region deletes most of the coding sequence, but does not result in frameshift.
- > The *Spg7* gene is located on the Chr8. If the knockout mice are crossed with other mice strains to obtain double gene positive homozygous mouse offspring, please avoid the two genes on the same chromosome.
- > This Strategy is designed based on genetic information in existing databases. Due to the complexity of biological processes, all risk of loxp insertion on gene transcription, RNA splicing and protein translation cannot be predicted at existing technological level.

Gene information (NCBI)

Spg7 SPG7, paraplegin matrix AAA peptidase subunit [Mus musculus (house mouse)]

Gene ID: 234847, updated on 19-Mar-2019

Summary

☆ ?

Official Symbol Spg7 provided by MGI

Official Full Name SPG7, paraplegin matrix AAA peptidase subunit provided by MGI

Primary source MGI:MGI:2385906

See related Ensembl:ENSMUSG00000000738

Gene type protein coding
RefSeq status VALIDATED
Organism Mus musculus

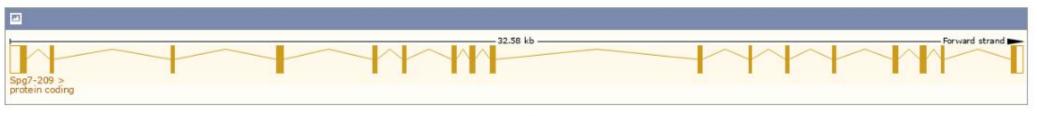
Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;

Muroidea; Muridae; Murinae; Mus; Mus

Also known as Al452278, AU015315, Cmar, PGN

Expression Ubiquitous expression in adrenal adult (RPKM 106.3), duodenum adult (RPKM 72.3) and 28 other tissuesSee more

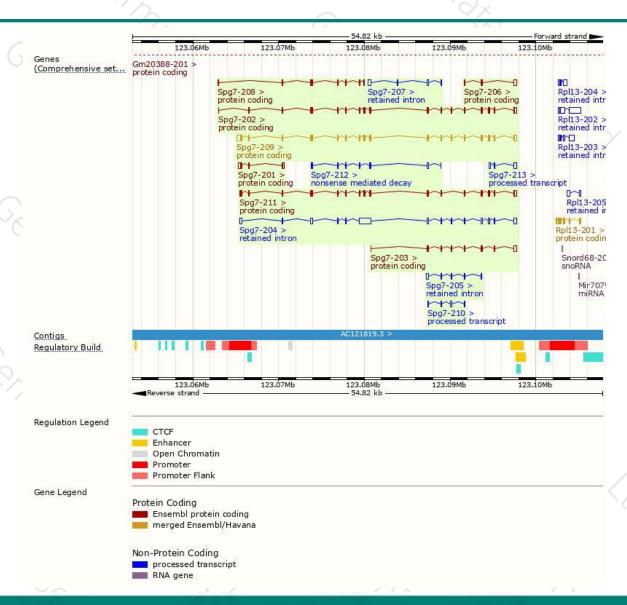
Orthologs <u>human</u> all


Transcript information (Ensembl)

The gene has 13 transcripts, all transcripts are shown below:

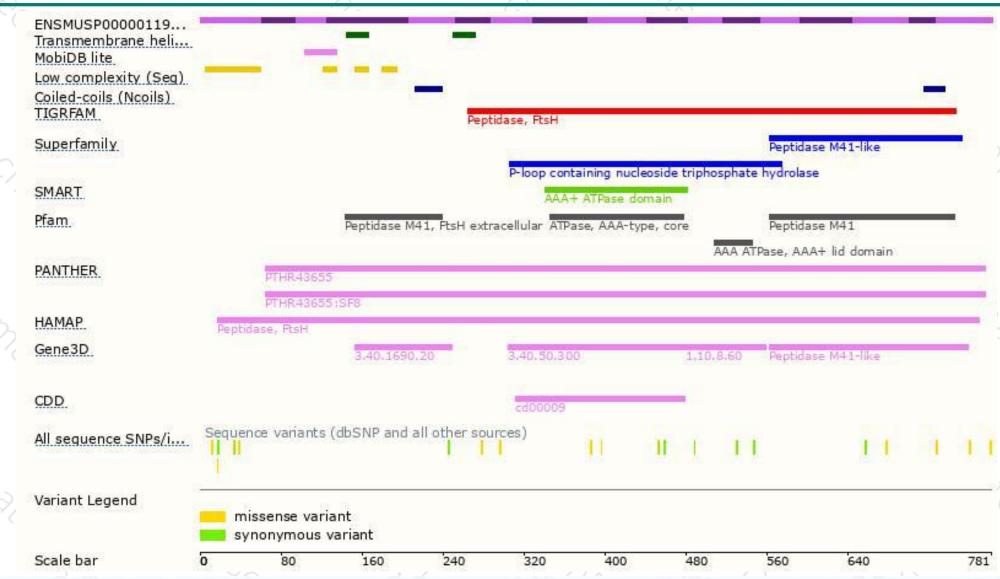
			/ } .		1 1000		
Name	Transcript ID	bp	Protein	Biotype	CCDS	UniProt	Flags
Spg7-209	ENSMUST00000149248.8	2896	<u>781aa</u>	Protein coding	CCDS40508	Q3ULF4	TSL:1 GENCODE basic APPRIS P2
Spg7-211	ENSMUST00000153285.8	2481	<u>744aa</u>	Protein coding	-8	D3YXB7	TSL:5 GENCODE basic APPRIS ALT2
Spg7-202	ENSMUST00000125975.7	2408	<u>676aa</u>	Protein coding	-	D3YZN4	TSL:5 GENCODE basic APPRIS ALT2
Spg7-203	ENSMUST00000128234.7	1080	253aa	Protein coding	20	F6W695	CDS 5' incomplete TSL:3
Spg7-201	ENSMUST00000108868.10	845	<u>145aa</u>	Protein coding	-	A0A1I7Q4C2	TSL:2 GENCODE basic
Spg7-208	ENSMUST00000142541.7	809	230aa	Protein coding	-5	D3Z342	CDS 3' incomplete TSL:5
Spg7-206	ENSMUST00000135991.1	592	90aa	Protein coding	2	F6VTG4	CDS 5' incomplete TSL:5
Spg7-212	ENSMUST00000153492.7	883	209aa	Nonsense mediated decay		<u>G3UX97</u>	CDS 5' incomplete TSL:5
Spg7-204	ENSMUST00000128803.7	3385	No protein	Retained intron	-	-5	TSL:5
Spg7-207	ENSMUST00000142150.1	693	No protein	Retained intron	-8	-	TSL:3
Spg7-205	ENSMUST00000130787.7	613	No protein	Retained intron	-	2	TSL:3
Spg7-213	ENSMUST00000212364.1	669	No protein	IncRNA		2	TSL:3
Spg7-210	ENSMUST00000152972.1	390	No protein	IncRNA	-	-	TSL:3

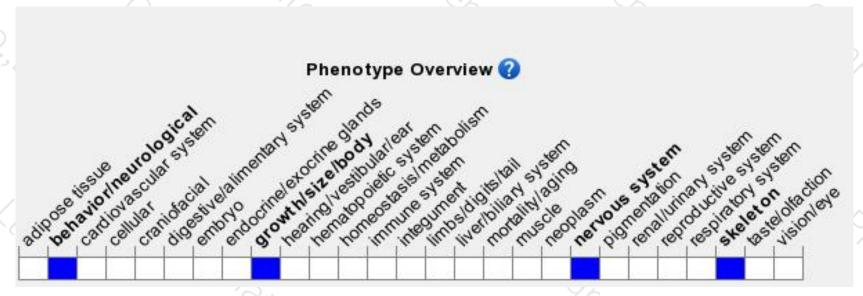
The strategy is based on the design of *Spg7-209* transcript, The transcription is shown below



Statistics

Exons: 17, Coding exons: 17, Transcript length: 2,896 bps, Translation length: 781 residues


Genomic location distribution


Protein domain

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/).

According to the existing MGI data, Homozygous null mice exhibit impaired motor skills, putativley associated with axonal degeneration in the central and peripheral nervous systems.

If you have any questions, you are welcome to inquire. Tel: 400-9660890

