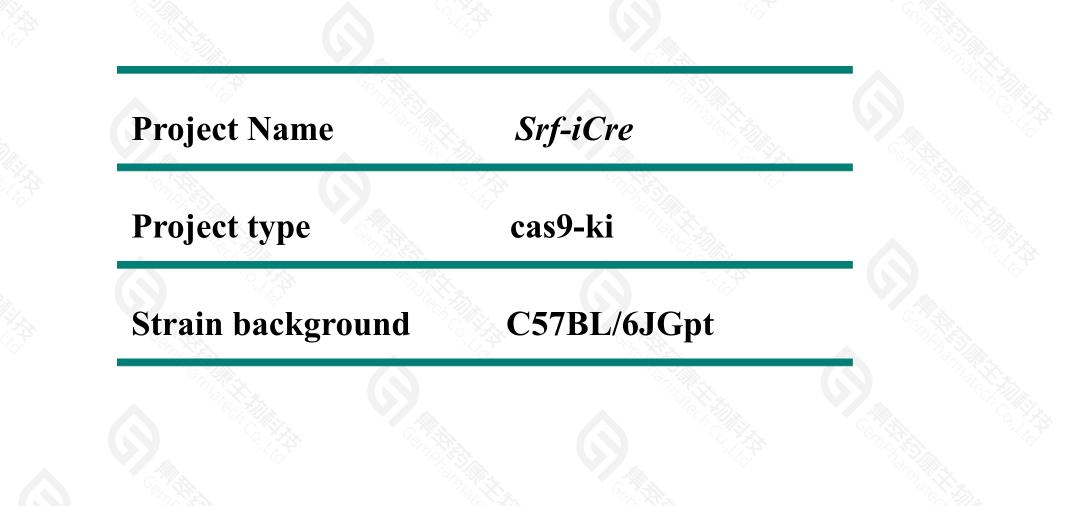
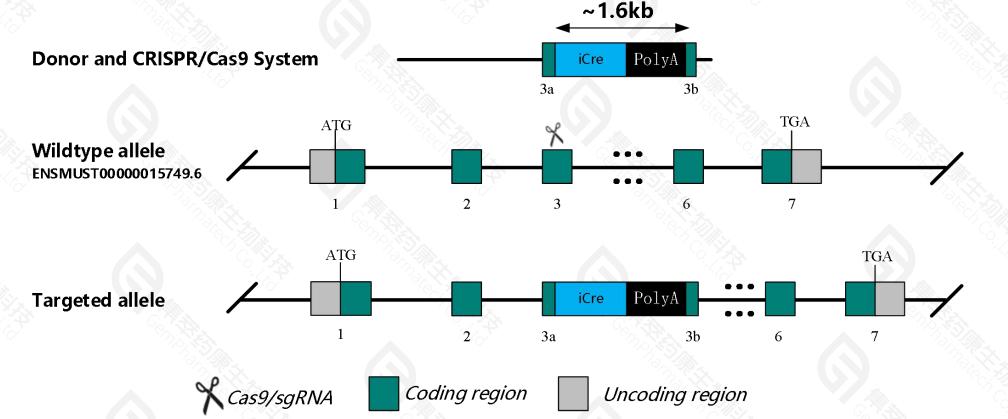
Srf-iCre cas9-ki Mouse Model Strategy


Designer: Zihe Cui

Reviewer: Ruirui Zhang

Design Date: 2021-6-7


Project Overview

Conditional Knockout strategy

This model will use CRISPR/Cas9 technology to edit the Srf gene. The schematic diagram is as follows:

iCre will be inserted into exon3 and expressed in the frame with the amino acid at the N-terminal of the insertion site, and endogenous *Srf* gene expression will be closed.

Technical routes

 \succ The *Srf* gene has 4 transcripts.

> According to the structure of *Srf* gene, the element *iCre-PolyA* will be inserted into exon3 of *Srf-201*(ENSMUST00000015749.6), the length of inserted fragment is about 1.6kb.

> The mouse *Srf*-201 transcript contains 7 exons. The translation initiation site ATG is located at exon1, and the translation termination site TGA is located at exon7, encoding 504aa.

> In this project we use CRISPR/Cas9 technology to modify *Srf* gene. The brief process is as follows:sgRNA was transcribed in vitro, donor vector was constructed. Cas9, sgRNA and Donor were microinjected into the fertilized eggs of C57BL/6JGpt mice.Fertilized eggs were transplanted to obtain positive F0 mice which were confirmed by PCR and sequencing. A stable F1 generation mouse model was obtained by mating positive F0 generation mice with C57BL/6JGpt mice.

Notice

> According to the existing MGI data, homozygous null mice exhibit embryonic lethality, abnormal gastrulation, no mesoderm or primitive streak formation and reduced embryo size.

- *iCre* will be inserted in exon3 as a fusion protein, the change of protein spatial structure may affect the function of *Srf* and *iCre*.
 It is necessary to introduce 1-2 synonymous mutation in exon3.
- The insertion site is close to the 3' of *Mir6976* gene, and this strategy may affect the regulation of the 3' of the *Mir6976* gene.
 Transcript *Srf*-204 will be distrupted, transcript *Srf*-203 may not be affected, and the effect of transcript *Srf*-202 is unknown.
 The *Srf* gene is located on the Chr17. Please take the loci in consideration when breeding this knockin mice with other gene modified strains, if the other gene is also on Chr17, it may be extremely hard to get double gene positive homozygotes.
 The scheme is designed according to the genetic information in the existing database. Inserting a foreign gene into exon and the gene coding region may affect the expression of endogenous and foreign genes. Due to the complexity of biological processes, it cannot be predicted completely at the present technology level.

Insertion site

insertion site

1	1		1	5	ĩ.	1								15					20					25			i.		30	1	18
D	Т	L	ĸ	Ρ	Α	F	Т	V	Т	N	L	Р	G	Т	Т	S	Т	Ι	Q	Т	Α	Р	S	Т	S	Т	Т	М	Q	V	S
															Ex	on3															

34	- 11 - E	35	5	ĩ.	ĩ	Ĩ.	12	40	Si	÷.	3	1	45	I.	10	13	Si.	50	3	1	1	Ĩ.	55	. 67	3	61	- 11 - I	60	Ĩ.	Ĩ	10	12	65	- CT	1	10	1	70	. 13	67	
S	G	P		S	F	Ρ	Ι	Т	N	Y	L	Α	Ρ	V	S	Α	S	V	S	Ρ	S	Α	V	S	S	Α	N	G	Т	V	L	K	S	Т	G	S	G	P	V	S	
																				E	Exon3																				2

22	17	7	75	1	1	12	ĩ	80	31	ĩ	37	1	85	12	ĩ																					
5	G G		G	L	М	Q	L	Р	Т	S	F	Т	L	М	Ρ	G	E	S	Q	G	A	G	R	G	L	F	S	L	G	Q	Ι	E	G	V	E	*
								Exon	3															- (ir	fram	ne wit	h Exc	n3)								>

Gene information (NCBI)

☆ ?

Srf serum response factor [Mus musculus (house mouse)]

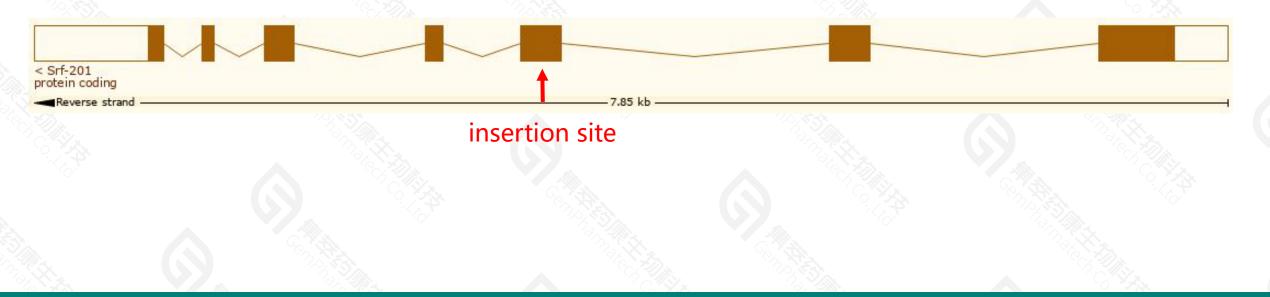
Gene ID: 20807, updated on 22-Dec-2020

Summary

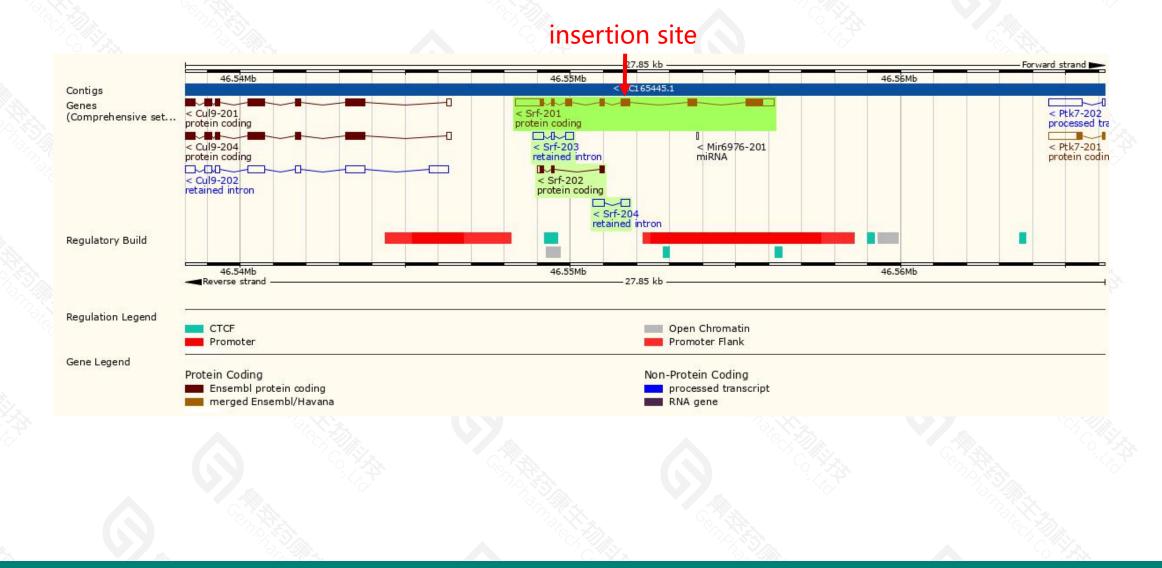
Official SymbolSrf provided by MGIOfficial Full Nameserum response factor provided by MGIPrimary sourceMGI:MGI:106658See relatedEnsembl:ENSMUSG0000015605Gene typeprotein codingRefSeq statusVALIDATEDOrganismMus musculusLineageEukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha;
Muroidea; Muridae; Murinae; Mus; MusAlso known asAW049942; AW240594ExpressionUbiquitous expression in ovary adult (RPKM 59.4), colon adult (RPKM 43.3) and 28 other tissues See more
human all

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.


Transcript information (Ensembl)

The gene has 4 transcripts, and all transcripts are shown below:

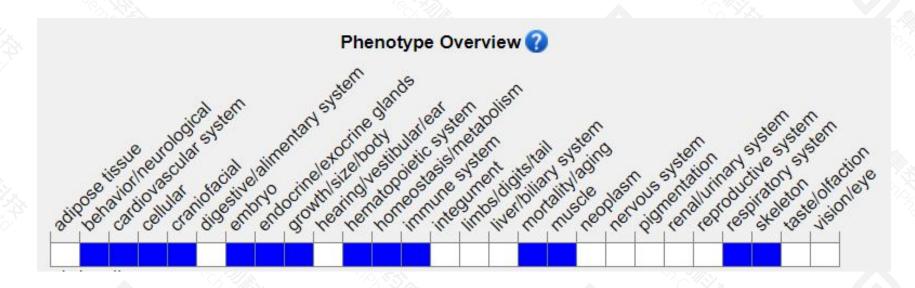

Name 🖕	Transcript ID 💧	bp 🍦	Protein 🖕	Biotype 💧	CCDS 🖕	UniProt Match	Flags
Srf-201	ENSMUST0000015749.6	2616	<u>504aa</u>	Protein coding	<u>CCDS28831</u> &	<u>Q9JM73</u> ଟ୍ଟ	TSL:1 GENCODE basic APPRIS P1
Srf-202	ENSMUST00000233104.1	376	<u>97aa</u>	Protein coding	2	A0A3B2WCW1 &	CDS 5' incomplete
Srf-203	ENSMUST00000233767.1	637	No protein	Retained intron	1 -	1	-
Srf-204	ENSMUST00000233797.1	595	No protein	Retained intron			-

The strategy is based on the design of *Ptges2*-201 transcript, the transcription is shown below:

Genomic location distribution

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.


400-9660890

Protein domain

ISMUSP00000015							
w complexity (Seg)		Transcri	ption factor, MADS-box superfa	mily	-		
1ART			ption factor, MADS-box				
ints am		Transcr	iption factor, MADS-box scription factor, MADS-box				
OSITE profiles		1 and	ption factor, MADS-box				
OSITE patterns			iption factor, MADS-box				
NTHER		PTHR11					-
		PTHR1	1945:SF221				-2
ne3D		Tra	nscription factor, MADS-box sup	perfamily			
D			SRF-like				
sequence SNPs/i	Sequence variants (dbSN	NP and all other sources)	0	1	List.		
riant Legend	synonymous varian	nt					
iant Legend Ile bar	synonymous varian	nt 120	180	240 300	360	420	504
			180	240 300	360	420	50
			180	240 300	360	420	50
			180	240 300	360	420	50
			180	240 300	360	420	50
			180	240 300	360	420	50

Mouse phenotype description(MGI)

Phenotypes affected by the gene are marked in blue.Data quoted from MGI database(http://www.informatics.jax.org/). Homozygous null mice exhibit embryonic lethality, abnormal gastrulation, no mesoderm or primitive streak formation and reduced embryo size.

If you have any questions, you are welcome to inquire. Tel: 025-5864 1534

