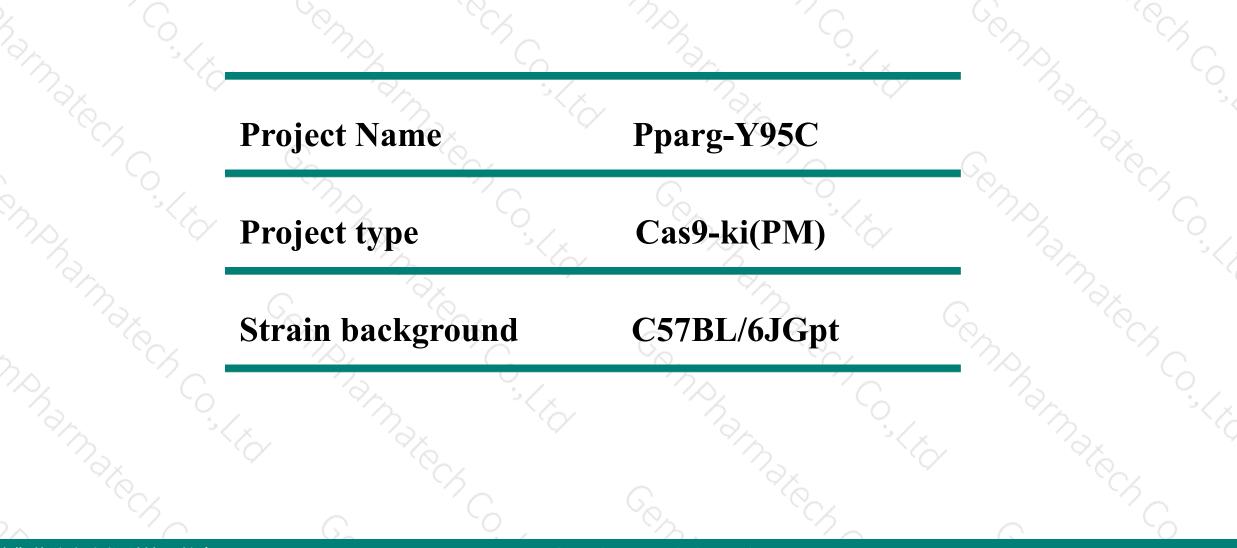
Pparg-Y95C Mouse Model Strategy -CRISPR/Cas9 technology


Designer: Xueting Zhang

Reviewer: Yanhua Shen

Design Date: 2020-12-17

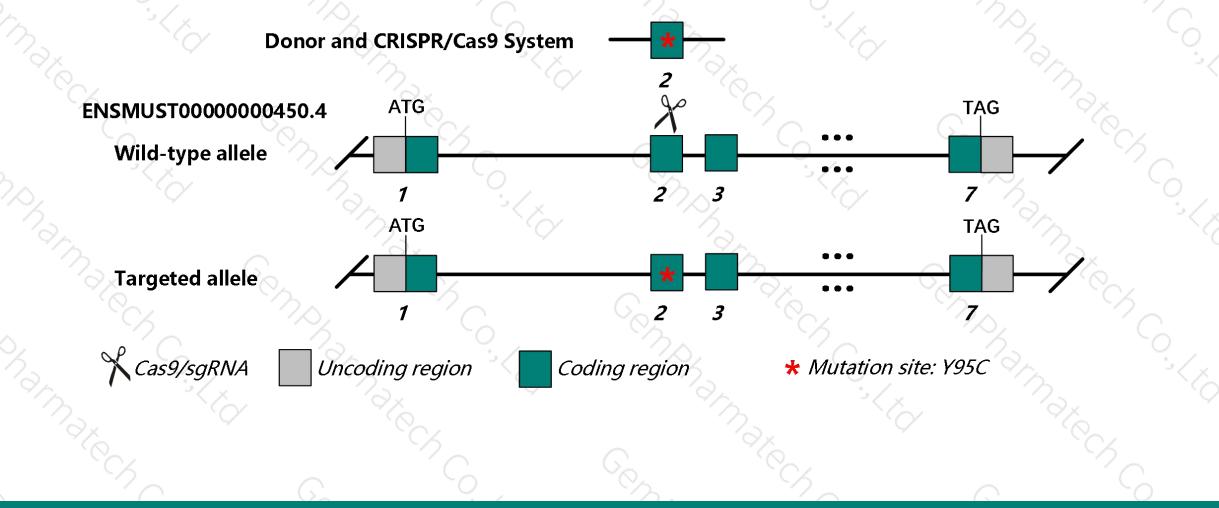
Project Overview

Technical Description

- The mouse *Pparg* gene has 7 transcripts.
- According to the structure of *Pparg* gene and requirements of customer, this project produced *Pparg*-Y95C point mutation on exon2 of the transcript of *Pparg*-201(ENSMUST0000000450.4, NM_011146.3). The 95th amino acids will be mutated from Y to C, and the corresponding codon will be mutated to TGT by the TAT.
- The mouse *Pparg*-201 transcript contains 7 exons. The translation initiation site ATG is located at exon1, and the translation termination site TAG is located at exon7, encoding 505aa.
- In this project, *Pparg* gene will be modified by CRISPR/Cas9 technology. The brief process is as follows: In vitro, sgRNA and donor vectors were constructed. Cas9, sgRNA and donor were injected into the fertilized eggs of C57BL/6JGpt mice for homologous recombination, and obtained positive F0 mice identified by PCR and sequencing analysis. The stable inheritable positive F1 mice model was obtained by mating F0 mice with C57BL/6JGpt mice.

Mutation Site

Deiol	re mutat	tion								
+3										ITM
98801								ТСТТТТТТТТ АGAAAAAAAA		AATTACCATG TTAATGGTAC
•3	V D T	E M P F	V P T	NFG	ISSN	/ DL S	V M E	р н ѕ н	S F D	I K P F?
98901	GTTGACACAG CAACTGTGTC					GGACCTCTCC CCTGGAGAGG			TTCCTTTGAC AAGGAAACTG	
•3	?FTTV	DFS	S I S	A P H Y	E D I	PFT	R A D F	P M V A	DYK	Y D L K?
99001	TTACCACAGT AATGGTGTCA	TGATTTCTCC ACTAAAGAGG						AATGGTTGCT TTACCAACGA	GATTACAAAT CTAATGTTTA	
•3	?KLQE	YQ								5
99101								CATTGAATAA GTAACTTATT		
Afte	r mutati	ión		22) *3 / 5		20.	27	
+3				1 Jan		N Cores				I T M
•3 98801								тстттттт адаааааааа		AATTACCATG
1.					GACGGGAGGT				GGTGAAGTCT	AATTACCATG
98801	ATTTGAGTAA	GTCGAGGAGA E M P F AGATGCCATT	GATACAGATA V P T CTGGCCCACC	N F G	GACGGGAGGT I S S TCAGCTCTGT	CTTGAACTGA	GTATAGGACA V M E GTGATGGAAG	Адаааааааа	GGTGAAGTCT S F D TTCCTTTGAC	AATTACCATG TTAATGGTAC I K P F? ATCAAGCCCT
98801 +3	ATTTGAGTAA V D T GTTGACACAG	GTCGAGGAGA E M P F AGATGCCATT TCTACGGTAA	GATACAGATA V P T CTGGCCCACC	N F G	GACGGGAGGT I S S TCAGCTCTGT	CTTGAACTGA	GTATAGGACA V M E GTGATGGAAG CACTACCTTC	AGAAAAAAAA D H S H ACCACTCGCA	GGTGAAGTCT SFD TTCCTTTGAC AAGGAAACTG	AATTACCATG TTAATGGTAC I K P F? ATCAAGCCCT
98801 •3 98901	ATTTGAGTAA V D T GTTGACACAG CAACTGTGTC ?F T T V TTACCACAGT	GTCGAGGAGA E M P F AGATGCCATT TCTACGGTAA O F S TGATTTCTCC	GATACAGATA V P T CTGGCCCACC GACCGGGTGG S I S AGCATTTCTG	CTCCTGACGA N F G AACTTCGGAA TTGAAGCCTT A P H CTCCACACTA	GACGGGAGGT SS TCAGCTCTGT AGTCGAGACA CEDI TGAAGACATT	CTTGAACTGA D L S GGACCTCTCC CCTGGAGAGG P F T CCATTCACAA	GTATAGGACA V M E GTGATGGAAG CACTACCTTC R A D C GAGCTGACCC	AGAAAAAAAA D H S H G ACCACTCGCA TGGTGAGCGT	GGTGAAGTCT SFD TTCCTTTGAC AAGGAAACTG DYK GATTACAAAT	AATTACCATG TTAATGGTAC I K P F? ATCAAGCCCT TAGTTCGGGA C D L K? GTGACCTGAA
98801 +3 98901 +3 99001	ATTTGAGTAA V D T GTTGACACAG CAACTGTGTC ?F T T V TTACCACAGT AATGGTGTCA ?K L Q E	GTCGAGGAGA E M P F AGATGCCATT TCTACGGTAA D F S TGATTTCTCC ACTAAAGAGG Y Q	GATACAGATA V P T CTGGCCCACO GACCGGGTGG S I S AGCATTTCTG TCGTAAAGAC	CTCCTGACGA N F G AACTTCGGAA TTGAAGCCTT A P H Y CTCCACACTA GAGGTGTGAT	GACGGGAGGT S S TCAGCTCTGT AGTCGAGACA C E D I TGAAGACATT ACTTCTGTAA	CTTGAACTGA V D L S GGACCTCTCC CCTGGAGAGG P F T CCATTCACAA GGTAAGTGTT	GTATAGGACA V M E GTGATGGAAG CACTACCTTC R A D C GAGCTGACCC CTCGACTGGG	AGAAAAAAAA D H S H ACCACTCGCA TGGTGAGCGT P M V A AATGGTTGCT	GGTGAAGTCT SFD TTCCTTTGAC AAGGAAACTG DYK GATTACAAAT CTAATGTTTA	AATTACCATG TTAATGGTAC I K P F? ATCAAGCCCT TAGTTCGGGA C D L K? GTGACCTGAA CACTGGACTT


The blue region is exon2 of *Pparg-201*, the yellow region represents the mutation site.

Strategy

025-5864 1534

This model uses CRISPR/Cas9 technology to edit the *Pparg* gene and the schematic diagram is as follow:

江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

- According to the data of MGI, homozygotes for targeted null mutations exhibit lethality due to placental defects.
 Heterozygotes show greater B cell proliferation, enhanced leptin secretion, and resistance to diet-induced adipocyte hypertrophy and insulin resistance.
- > One or Two synonymous mutations of amino acids will be intronduced on exon2 of *Pparg*.
- > Transcript *Pparg*-203 may be unaffected.
- There may be mutations of base in this animal model making process because of the repetition structure(polyAC) downstream of the mutation site.
- Mouse *Pparg* gene is located on Chr6. Please take the loci in consideration when breeding this mutation mice with other gene modified strains, if the other gene is also on Chr6, it may be extremely hard to get double gene positive homozygotes.
- The scheme is designed according to the genetic information in the existing database. Due to the complex process of gene transcription and translation, it cannot be predicted completely at the present technology level.

江苏集萃药康生物科技股份有限公司

Gene name and location (NCBI)

Pparg peroxisome proliferator activated receptor gamma [Mus musculus (house mouse)]

Gene ID: 19016, updated on 17-Dec-2020

Summary

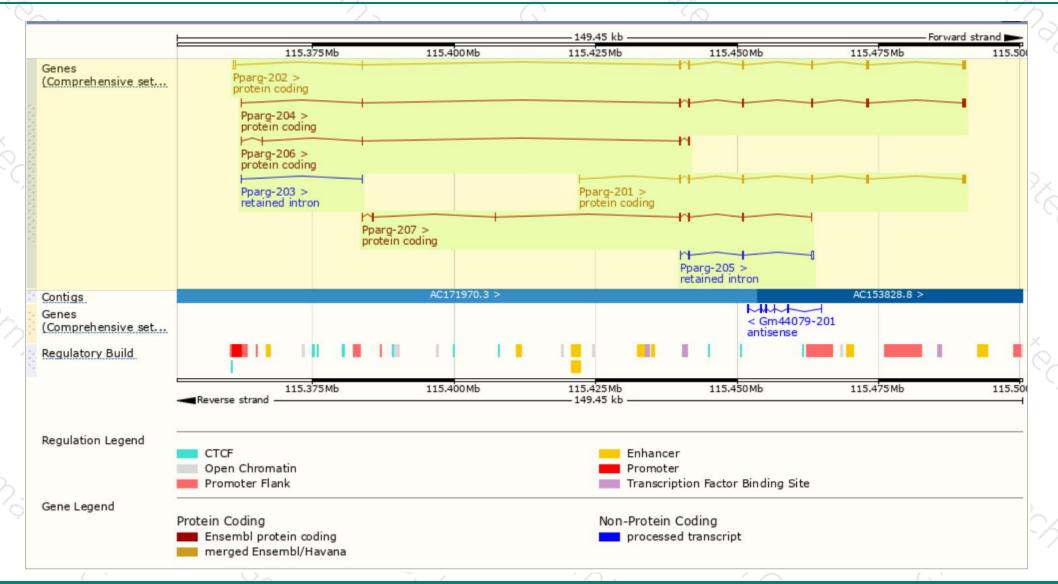
Official Symbol Pparg provided by MGI peroxisome proliferator activated receptor gamma provided by MGI Official Full Name Primary source MGI:MGI:97747 Ensembl:ENSMUSG0000000440 See related Gene type protein coding RefSeg status REVIEWED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Nr1; PPA; PPAR; Nr1c3; Ppar-; PPARgamma; PPAR-gamma; PPARgamma2; PPAR-gamma2 This gene encodes a nuclear receptor protein belonging to the peroxisome proliferator-activated receptor (Ppar) family. The Summary encoded protein is a ligand-activated transcription factor that is involved in the regulation of adipocyte differentiation and glucose homeostasis. The encoded protein forms a heterodimer with retinoid X receptors and binds to DNA motifs termed "peroxisome proliferator response elements" to either activate or inhibit gene expression. Mice lacking the encoded protein die at an embryonic stage due to severe defects in placental vascularization. When the embryos lacking this gene are supplemented with healthy placentas, the mutants survive to term, but succumb to lipodystrophy and multiple hemorrhages. Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeg, Apr 2015] Expression Biased expression in subcutaneous fat pad adult (RPKM 32.5), mammary gland adult (RPKM 26.1) and 13 other tissues See more Orthologs human all

GemPharmatech Co., Ltd.

025-5864 1534

Transcript information (Ensembl)

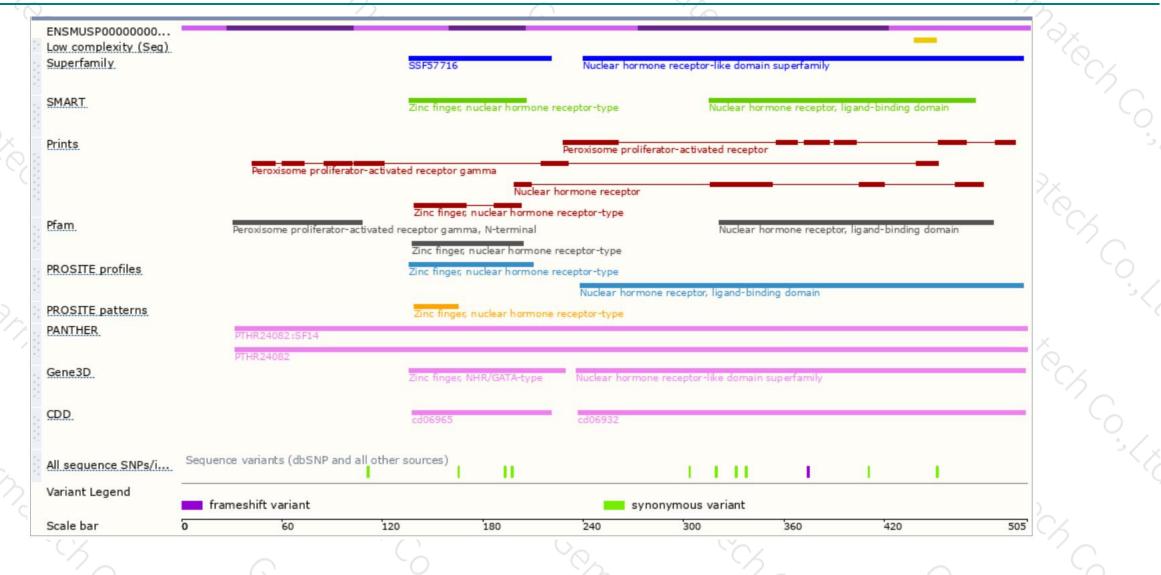
The gene has 7 transcripts, and all transcripts are shown below:


Name 🍦	Transcript ID 🛛 🍦	bp 🍦	Protein 🖕	Biotype 🖕	CCDS 🖕	UniProt Match 🖕		Flags	
Pparg-202	ENSMUST00000171644.7	2125	<u>475aa</u>	Protein coding	<u>CCDS51876</u> &	<u>M1VPI1</u> &	TSL:1	GENCODE basic	APPRIS ALT1
Pparg-204	ENSMUST00000203732.2	1826	<u>475aa</u>	Protein coding	<u>CCDS51876</u> &	<u>M1VPI1</u> &	TSL:1	GENCODE basic	APPRIS ALT1
Pparg-201	ENSMUST0000000450.4	1767	<u>505aa</u>	Protein coding	<u>CCDS20439</u> &	<u>Q6GU14</u> &	TSL:1	GENCODE basic	APPRIS P3
Pparg-207	ENSMUST00000205213.2	835	<u>222aa</u>	Protein coding	2	<u>A0A0N4SV67</u> &	10	CDS 3' incomplete	TSL:3
Pparg-206	ENSMUST00000204305.2	497	<u>96aa</u>	Protein coding	-	<u>A0A0N4SVF8</u> &		CDS 3' incomplete	TSL:3
Pparg-205	ENSMUST00000203896.1	915	No protein	Retained intron	-	- 1		TSL:2	
Pparg-203	ENSMUST00000203308.1	213	No protein	Retained intron	-	(TSL:5	

The strategy is based on the design of *Pparg*-201 transcript, the transcription is shown below:

Ppa	arg-201 > tein coding		68.33	kb —			Forward strand
	That a		Nr. Ch	7		YM ato	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Shi			8		°C2	Č (Y)	

Genomic location distribution


江苏集萃药康生物科技股份有限公司

GemPharmatech Co., Ltd.

025-5864 1534

Protein domain

江苏集萃药康生物科技股份有限公司

Mouse phenotype description(MGI)

digestive/alimentary syste

endocrinelexocrine dian

respiratory system

tastelofaction

visionleye

reproductive sy

pignentation

renalivinary

nenoussyste

neoplasm

URL link is as follows: http://www.informatics.jax.org/marker/MGI:97747

Click cells to view annotations.

cardiovascular system

behaviorineurologica

adiposetissue

Homozygotes for targeted null mutations exhibit lethality due to placental defects. Heterozygotes show greater B cell proliferation, enhanced leptin secretion, and resistance to diet-induced adipocyte hypertrophy and insulin resistance.

iverbilary syste

limbs/digits/tail

mortality/aging

Phenotype Overview 🕜

homeostasisimetabolis

hematopoietic system

heatinglyestipularlear

萃药康生物科技股份有限公司

GemPharmatech Co., Ltd

025-5864 1534

If you have any questions, please feel free to contact us. Tel: 025-5864 1534

